Interactions of semiflexible filaments and molecular motors.

Phys Rev E Stat Nonlin Soft Matter Phys

Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA.

Published: November 2007

This paper summarizes the results of numerical simulations of the interaction of a pair of biofilaments mediated by a molecular motor. The filaments are modeled as flexible rods, and the results are applicable to microtubules, which are relatively stiff, as well as to much softer filaments, such as actin. The results provide insight into the effects of flexibility on cytoskeleton formation and the rheology of semiflexible filament networks. The simulations are based on a nonlinear elasticity equation. The results show that flexibility enhances the tendency of filaments to align. The enhancement in turn favors the formation of large-scale structures in multifilament systems. Simulations for soft filaments show that the action of the motor can result in the formation of multiple loops of the filaments as a result of buckling, which can affect the structure of a cross-linked network and thereby its rheology. The estimate for the minimal buckling length as a function of the motor speed, the viscosity of the solvent, and the bending stiffness of the filament is derived analytically.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.76.051905DOI Listing

Publication Analysis

Top Keywords

filaments
6
interactions semiflexible
4
semiflexible filaments
4
filaments molecular
4
molecular motors
4
motors paper
4
paper summarizes
4
summarizes numerical
4
numerical simulations
4
simulations interaction
4

Similar Publications

Dyneins are huge motor protein complexes that are essential for cell motility, cell division, and intracellular transport. Dyneins are classified into three major subfamilies, namely cytoplasmic, intraflagellar-transport (IFT), and ciliary dyneins, based on their intracellular localization and functions. Recently, several near-atomic resolution structures have been reported for cytoplasmic/IFT dyneins.

View Article and Find Full Text PDF

We analysed here the dynamic of the kinesin-like Pavarotti (Pav) during male gametogenesis of wild-type and Sas4 mutant flies. Pav localizes to the equatorial region and the inner central spindle of late anaphase wild-type spermatogonia and displays a strong concentration at the midbody during late telophase. At metaphase of the first meiotic division, Pav shows widespread localization on the equatorial region of the spermatocytes.

View Article and Find Full Text PDF

The cytoskeleton is a crucial determinant of mammalian cell structure and function, providing mechanical resilience, supporting the cell membrane and orchestrating essential processes such as cell division and motility. Because of its fundamental role in living cells, developing a reconstituted or artificial cytoskeleton is of major interest. Here we present an approach to construct an artificial cytoskeleton that imparts mechanical support and regulates membrane dynamics.

View Article and Find Full Text PDF

The ESCRT machinery mediates membrane remodeling in numerous processes in cells including cell division and nuclear membrane reformation. The identification of ESCRT homologs in Asgard archaea, currently considered the closest prokaryotic relative of eukaryotes, implies a role for ESCRTs in the membrane remodeling processes that occurred during eukaryogenesis. Yet, the function of these distant ESCRT homologs is mostly unresolved.

View Article and Find Full Text PDF

Microplastic pollution has become a global environmental issue, severely impacting marine ecosystems. In Colombia, understanding of marine microplastic pollution remains limited, necessitating targeted efforts for prevention and conservation. This study presents the first assessment of microplastics along 125 km of the Caribbean coast of La Guajira region in Colombia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!