Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A train of attosecond pulses, synchronized to an infrared (IR) laser field, is used to create a series of electron wave packets (EWPs) that are below the ionization threshold in .helium. The ionization probability is found to strongly oscillate with the delay between the IR and attosecond fields twice per IR laser cycle. Calculations that reproduce the experimental results demonstrate that this ionization control results from interference between transiently bound EWPs created by different pulses in the train. In this way, we are able to observe, for the first time, attosecond wave-packet interference in a strongly driven atomic system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.99.233001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!