Soluble models of strongly interacting ultracold gas mixtures in tight waveguides.

Phys Rev Lett

College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA.

Published: December 2007

A Fermi-Bose mapping method is used to determine the exact ground states of several models of mixtures of strongly interacting ultracold gases in tight waveguides, which are generalizations of the Tonks-Girardeau (TG) gas (1D Bose gas with point hard cores) and fermionic Tonks-Girardeau (FTG) gas (1D spin-aligned Fermi gas with infinitely strong zero-range attractions). We detail the case of a Bose-Fermi mixture with TG boson-boson (BB) and boson-fermion (BF) interactions. Exact results are given for density profiles in a harmonic trap, single-particle density matrices, momentum distributions, and density-density correlations. Since the ground state is highly degenerate, we analyze the splitting of the ground manifold for large but finite BB and BF repulsions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.99.230402DOI Listing

Publication Analysis

Top Keywords

interacting ultracold
8
tight waveguides
8
gas
5
soluble models
4
models interacting
4
ultracold gas
4
gas mixtures
4
mixtures tight
4
waveguides fermi-bose
4
fermi-bose mapping
4

Similar Publications

Realizing quantum control and entanglement of particles is crucial for advancing both quantum technologies and fundamental science. Substantial developments in this domain have been achieved in a variety of systems. In this context, ultracold polar molecules offer new and unique opportunities because of their more complex internal structure associated with vibration and rotation, coupled with the existence of long-range interactions.

View Article and Find Full Text PDF

A Theoretical Study on Crossings Among Electronically Excited States and Laser Cooling of Group VIA (S, Se, and Te) Hydrides.

J Comput Chem

January 2025

Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.

Various electronically excited states and the feasibility of direct laser cooling of SH, SeH, and TeH are investigated using the highly accurate ab initio and dynamical methods. For the detailed calculations of the seven low-lying Λ-S states of SH, we utilized the internally contracted multireference configuration interaction approach, considering the spin-orbit coupling (SOC) effects. Our calculated spectroscopic constants are in very good agreement with the available experimental results.

View Article and Find Full Text PDF

We investigate the experimental control of pair tunneling in a double-well potential using Floquet engineering. We demonstrate a crossover from a regime with density-assisted tunneling to dominant pair tunneling by tuning the effective interactions. Furthermore, we show that the pair tunneling rate can be enhanced not only compared to the Floquet-reduced single-particle tunneling but even beyond the static superexchange rate, while keeping the effective interaction in a relevant range.

View Article and Find Full Text PDF

Self-Assembled Chains and Solids of Dipolar Atoms in a Multilayer.

Phys Rev Lett

December 2024

Departament de Física, Campus Nord B4-B5, Universitat Politècnica de Catalunya, E-08034 Barcelona, Spain.

We predict that ultracold bosonic dipolar gases, confined within a multilayer geometry, may undergo self-assembling processes, leading to the formation of chain gases and solids. These dipolar chains, with dipoles aligned across different layers, emerge at low densities and resemble phases observed in liquid crystals, such as nematic and smectic phases. We calculate the phase diagram using quantum Monte Carlo methods, introducing a newly devised trial wave function designed for describing the chain gas, where dipoles from different layers form chains without in-plane long-range order.

View Article and Find Full Text PDF
Article Synopsis
  • Long-range spin-spin interactions can create nonequilibrium dynamics that enhance the collective spin of quantum ensembles, improving entanglement as the system size increases.
  • The study shows that even short-range interactions in 2D U(1)-symmetric systems can lead to scalable squeezing, particularly in a critical phase that does not exhibit long-range order at finite temperatures.
  • The findings suggest that slow magnetization decay during nonequilibrium dynamics can protect scalable squeezing, paving the way for the creation of large entangled states in various quantum technologies, such as ultracold atoms and superconducting circuits.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!