Purcell enhancement of spontaneous emission from quantum cascades inside mirror-grating metal cavities at THz frequencies.

Phys Rev Lett

CNRS/LPN, Laboratoire de Photonique et de Nanostructures, Route de Nozay, 91460 Marcoussis, France.

Published: November 2007

Quantum cascade devices processed into double metal cavities with subwavelength thickness and a grating on top are studied at terahertz frequencies. The power extracted from the devices as a function of the device thickness and the grating period is analyzed owing to electrodynamical modeling of dipole emission based on a modal method in multilayer systems. The experimental data thus reveal a strong Purcell enhancement, with Purcell factors up to approximately 50.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.99.223603DOI Listing

Publication Analysis

Top Keywords

purcell enhancement
8
metal cavities
8
thickness grating
8
enhancement spontaneous
4
spontaneous emission
4
emission quantum
4
quantum cascades
4
cascades inside
4
inside mirror-grating
4
mirror-grating metal
4

Similar Publications

Chameleon-inspired molecular imprinted polymer with bicolored states for visual and stable detection of diethylstilbestrol in water and food samples.

Food Chem

December 2024

Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, 300070 Tianjin, People's Republic of China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, People's Republic of China. Electronic address:

A novel biomimetic molecular imprinted polymer chip with fluorescence (FL) and structural (STR) states, inspired by color patterns of chameleon skin, is fabricated for detecting diethylstilbestrol (DES). The chip features a regularly structured, non-closed-packed (NCP) colloidal photonic crystal (CPC) lattice made monodisperse MIP spheres containing fluorescence poly ionic liquid (FPIL) pigments. The FL color originates from FPIL pigments and is further enhanced by the Purcell effect, while the STR color results from the periodic arrangement of the NCP CPC structure.

View Article and Find Full Text PDF

Association mapping for water use efficiency in soybean identifies previously reported and novel loci and permits genomic prediction.

Front Plant Sci

November 2024

Plant Genetic Research Unit, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), University of Missouri, Columbia, MO, United States.

Soybean is a major legume crop cultivated globally due to the high quality and quantity of its seed protein and oil. However, drought stress is the most significant factor that decreases soybean yield, and more than 90% of US soybean acreage is dependent on rainfall. Water use efficiency (WUE) is positively correlated with the carbon isotopic ratio C/C (C13 ratio) and selecting soybean varieties for high C13 ratio may enhance WUE and help improve tolerance to drought.

View Article and Find Full Text PDF

π-HuB: the proteomic navigator of the human body.

Nature

December 2024

State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.

The human body contains trillions of cells, classified into specific cell types, with diverse morphologies and functions. In addition, cells of the same type can assume different states within an individual's body during their lifetime. Understanding the complexities of the proteome in the context of a human organism and its many potential states is a necessary requirement to understanding human biology, but these complexities can neither be predicted from the genome, nor have they been systematically measurable with available technologies.

View Article and Find Full Text PDF

Nonlocal effects in plasmon-emitter interactions.

Nanophotonics

July 2024

POLIMA - Center for Polariton-Driven Light-Matter Interactions, University of Southern Denmark, DK-5230 Odense, Denmark.

Nonlocal and quantum mechanical phenomena in noble metal nanostructures become increasingly crucial when the relevant length scales in hybrid nanostructures reach the few-nanometer regime. In practice, such mesoscopic effects at metal-dielectric interfaces can be described using exemplary surface-response functions (SRFs) embodied by the Feibelman -parameters. Here we show that SRFs dramatically influence quantum electrodynamic phenomena - such as the Purcell enhancement and Lamb shift - for quantum light emitters close to a diverse range of noble metal nanostructures interfacing different homogeneous media.

View Article and Find Full Text PDF
Article Synopsis
  • J-aggregates are assemblies of dyes that exhibit strong light absorption and fluorescence due to delocalized excitons, but their effectiveness is limited by local disorder and thermal decoherence.
  • To enhance exciton coherence and delocalization, researchers coupled ordered molecular dipoles to an electromagnetic mode within an optical resonator.
  • By using dielectric metasurfaces, the study achieved a 5-fold increase in luminescence intensity and reduced emission directivity, showcasing the potential of these surfaces in promoting cooperative behaviors in excitonic systems.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!