Ferroelectricity, nonlinear dynamics, and relaxation effects in monoclinic Sn2P2S6.

Phys Rev Lett

Institute for Solid State Physics and Chemistry, Uzhgorod National University, 54 Voloshyn St., 88000 Uzhgorod, Ukraine.

Published: November 2007

An ab initio-based model of the temperature-induced ferroelectric phase transition in Sn2P2S6 (SPS) as a prototype of an unconventional ferroelectric is developed. The order parameter in SPS is found as the valley line on a total-energy surface of the zone-center fully symmetrical Ag and polar Bu distortions. Significant nonlinear coupling between order parameter and strain is observed. Monte Carlo simulations describe the additional low-temperature rearrangement in polar structure, which appears in domain boundaries, and describe the relaxation phenomena near the ferroelectric phase transition.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.99.207601DOI Listing

Publication Analysis

Top Keywords

ferroelectric phase
8
phase transition
8
order parameter
8
ferroelectricity nonlinear
4
nonlinear dynamics
4
dynamics relaxation
4
relaxation effects
4
effects monoclinic
4
monoclinic sn2p2s6
4
sn2p2s6 initio-based
4

Similar Publications

High-Performance Mechano-Sensitive Piezoelectric Nanogenerator from Post-Treated Nylon-11,11 Textiles for Energy Harvesting and Human Motion Monitoring.

ACS Appl Mater Interfaces

January 2025

School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.

Piezoelectric polymer textiles offer distinct advantages in the fabrication of wearable nanogenerators (NGs). One effective strategy to enhance the output capacity of NGs is to modulate the piezoelectric performance of the textiles. This paper focuses on further improving the piezoelectric properties of nylon-11,11 textiles through post-drawing and annealing treatments.

View Article and Find Full Text PDF

In this work, three composite materials based on Terfenol-D and PZT-type material were obtained with a classic sintering method using a combination of 0-3 phases, where the ferroelectric phase was doped PZT material (P) and the magnetic phase was Terfenol-D (T). The percentage of P and T components in the composites was variable, i.e.

View Article and Find Full Text PDF

Narrow Linewidth All-Optical Microwave Oscillator Based on Torsional Radial Acoustic Modes of Single-Mode Fiber.

Micromachines (Basel)

January 2025

Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China.

A Hz level narrow linewidth all-optical microwave oscillator based on the torsional radial acoustic modes (TR) of a single-mode fiber (SMF) is proposed and validated. The all-optical microwave oscillator consists of a 20 km SMF main ring cavity and a 5 km SMF sub ring cavity. The main ring cavity provides forward stimulated Brillouin scattering gain and utilizes a nonlinear polarization rotation effect to achieve TR mode locking.

View Article and Find Full Text PDF

Ferroelectric nematic (N) liquid crystals combine liquid-like fluidity and orientational order of conventional nematics with macroscopic electric polarization comparable in magnitude to solid-state ferroelectric materials. Here, we present a systematic study of twenty-seven homologous materials with various fluorination patterns, giving new insight into the molecular origins of spontaneous polar ordering in fluid ferroelectric nematics. Beyond our initial expectations, we find the highest stability of the N phase to be in materials with specific fluorination patterns rather than the maximal fluorination, which might be expected based on simple models.

View Article and Find Full Text PDF

High-pressure and low-temperature structural changes in the ferroelectric phase of (R)-3-quinuclidinol are analysed. The changes in unit-cell volume and parameters are continuous both on cooling and under increasing pressure. The anisotropy of the structural strain, however, is found to be different.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!