Dark matter particles need not be completely stable, and in fact they may be decaying now. We consider this possibility in the frameworks of universal extra dimensions and supersymmetry with very late decays of weakly interacting massive particles to Kaluza-Klein gravitons and gravitinos. The diffuse photon background is a sensitive probe, even for lifetimes far greater than the age of the Universe. Remarkably, both the energy spectrum and flux of the observed MeV gamma-ray excess may be simultaneously explained by decaying dark matter with MeV mass splittings. Future observations of continuum and line photon fluxes will test this explanation and may provide novel constraints on cosmological parameters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.99.191301 | DOI Listing |
Phys Rev Lett
December 2024
Univ Coimbra, Faculdade de Ciências e Tecnologia da Universidade de Coimbra and CFisUC, Rua Larga, 3004-516 Coimbra, Portugal.
The search for primordial black holes (PBHs) with masses M≪M_{⊙} is motivated by natural early-Universe production mechanisms and that PBHs can be dark matter. For M≲10^{14} kg, the PBH density is constrained by null searches for their expected Hawking emission (HE), the characteristics of which are, however, sensitive to new states beyond the standard model. If there exists a large number of spin-0 particles in nature, PBHs can, through HE, develop and maintain non-negligible spins, modifying the visible HE.
View Article and Find Full Text PDFUsing tremendous photon statistics gained with the stray light aperture of the NuSTAR telescope over 11 years of operation, we set strong limits on the emission of close to monochromatic photons from the radiative decays of putative dark matter sterile neutrinos in the Milky Way. In the energy range of 3-20 keV covered by the NuSTAR, the obtained limits reach the bottom edge of theoretical predictions of realistic models where sterile neutrinos are produced in the early Universe. Only a small region is left to explore, if the sterile neutrinos form the entire dark matter component.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Karlsruhe Institute of Technology, IQMT, 76131 Karlsruhe, Germany.
Josephson junction parametric amplifiers have become essential tools for microwave quantum circuit readout with minimal added noise. Even after improving at an impressive rate in the past decade, they remain vulnerable to magnetic fields, which limits their use in many applications such as spin qubits, Andreev and molecular magnet devices, dark matter searches, etc. Kinetic inductance materials, such as granular aluminum (grAl), offer an alternative source of nonlinearity with innate magnetic field resilience.
View Article and Find Full Text PDFLiving Rev Relativ
January 2025
Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX UK.
In the recent years, primordial black holes (PBHs) have emerged as one of the most interesting and hotly debated topics in cosmology. Among other possibilities, PBHs could explain both some of the signals from binary black hole mergers observed in gravitational-wave detectors and an important component of the dark matter in the Universe. Significant progress has been achieved both on the theory side and from the point of view of observations, including new models and more accurate calculations of PBH formation, evolution, clustering, merger rates, as well as new astrophysical and cosmological probes.
View Article and Find Full Text PDFISME Commun
January 2025
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
Antarctic snow harbors diverse microorganisms, including pigmented algae and bacteria, which create colored snow patches and influence global climate and biogeochemical cycles. However, the genomic diversity and metabolic potential of colored snow remain poorly understood. We conducted a genome-resolved study of microbiomes in colored snow from 13 patches (7 green and 6 red) on the Fildes Peninsula, Antarctica.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!