AI Article Synopsis

  • The study investigates how 56Fe spallation occurs when it collides with hydrogen at high energy (1A GeV), utilizing the SPALADIN setup at GSI in a method called inverse kinematics.
  • The research focuses on measuring the coincidence of low-energy light particles and fragments, which allows for a breakdown of the total reaction cross section into various deexcitation pathways.
  • The findings indicate that among different deexcitation models tested, only the GEMINI model accurately explains the majority of the experimental results, suggesting that in this light system, multifragmentation may not be necessary to account for the observations.

Article Abstract

The spallation of 56Fe in collisions with hydrogen at 1A GeV has been studied in inverse kinematics with the large-aperture setup SPALADIN at GSI. Coincidences of residues with low-center-of-mass kinetic energy light particles and fragments have been measured allowing the decomposition of the total reaction cross section into the different possible deexcitation channels. Detailed information on the evolution of these deexcitation channels with excitation energy has also been obtained. The comparison of the data with predictions of several deexcitation models coupled to the INCL4 intranuclear cascade model shows that only GEMINI can reasonably account for the bulk of collected results, indicating that in a light system with no compression and little angular momentum, multifragmentation might not be necessary to explain the data.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.100.022701DOI Listing

Publication Analysis

Top Keywords

light particles
8
setup spaladin
8
deexcitation channels
8
coincidence measurement
4
measurement residues
4
residues light
4
particles reaction
4
reaction 56fe+p
4
56fe+p gev
4
gev nucleon
4

Similar Publications

Advances in nanomaterials for radiation protection in the aerospace industry: a systematic review.

Nanotechnology

December 2024

CCTS/DFQM, UFSCar - Campus Sorocaba, Rod. João Leme dos Santos km 110 - SP-264 Bairro do Itinga - Sorocaba CEP 18052-780, Sorocaba, 18052-780, BRAZIL.

Nanomaterials stand out for their exceptional properties and innovative potential, especially in applications that protect against space radiation. They offer an innovative approach to this challenge, demonstrating notable properties of radiation absorption and scattering, as well as flexibility and lightness for the development of protective clothing and equipment. This review details the use of polymeric materials, such as polyimides (PIs), which are efficient at attenuating ultraviolet (UV) radiation and atomic oxygen (AO).

View Article and Find Full Text PDF

Deciphering Surface-Localized Structure of Nanodiamonds.

Nanomaterials (Basel)

December 2024

Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China.

Nanomaterials, heralded as the "new materials of the 21st century" for their remarkable physical and chemical properties and broad application potential, have attracted substantial attention in recent years. Among these materials, which challenge traditional physical boundaries, nanodiamonds (NDs) are widely applied across diverse industries due to their exceptional surface multifunctionality and chemical stability. Nevertheless, atomic-level manipulation of NDs presents considerable challenges, which require detailed structural analysis to thoroughly elucidate their properties.

View Article and Find Full Text PDF

Exploring Gluconamide-Modified Silica Nanoparticles of Different Sizes as Effective Carriers for Antimicrobial Photodynamic Therapy.

Nanomaterials (Basel)

December 2024

Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV-EHU, Apartado 644, 48080 Bilbao, Spain.

Antimicrobial resistance (AMR), a consequence of the ability of microorganisms, especially bacteria, to develop resistance against conventional antibiotics, hampering the treatment of common infections, is recognized as one of the most imperative health threats of this century. Antibacterial photodynamic therapy (aPDT) has emerged as a promising alternative strategy, utilizing photosensitizers activated by light to generate reactive oxygen species (ROS) that kill pathogens without inducing resistance. In this work, we synthesized silica nanoparticles (NPs) of different sizes (20 nm, 80 nm, and 250 nm) functionalized with the photosensitizer Rose Bengal (RB) and a gluconamide ligand, which targets Gram-negative bacteria, to assess their potential in aPDT.

View Article and Find Full Text PDF

Nanoplastics are known to represent a threat to marine ecosystems. Their combination with other contaminants of emerging concerns (CECs) may amplify ecotoxic effects, with unknown impacts on marine biodiversity. This study investigates the effects, single and combined, of bisphenol A (BPA)-one of the most hazardous CECs-and polystyrene nanoparticles (PS NPs)-as a proxy for nanoplastics, being among the most commonly found asmarine debris-on cholinesterase (ChE) activities of the ascidian .

View Article and Find Full Text PDF

is a tasty and low-calorie mushroom containing abundant high-quality protein. This study aims to improve the digestibility of protein (PEP) and hence to facilitate its development as a healthy alternative protein. The extracted PEP was pretreated with 1000-5000 U of papain, neutral protease and alkaline protease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!