Mutagenesis of folylpolyglutamate synthetase indicates that dihydropteroate and tetrahydrofolate bind to the same site.

Biochemistry

Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.

Published: February 2008

The folylpolyglutamate synthetase (FPGS) enzyme of Escherichia coli differs from that of Lactobacillus casei in having dihydrofolate synthetase activity, which catalyzes the production of dihydrofolate from dihydropteroate. The present study undertook mutagenesis to identify structural elements that are directly responsible for the functional differences between the two enzymes. The amino terminal domain (residues 1-287) of the E. coli FPGS was found to bind tetrahydrofolate and dihydropteroate with the same affinity as the intact enzyme. The domain-swap chimera proteins between the E. coli and the L. casei enzymes possess both folate or pteroate binding properties and enzymatic activities of their amino terminal portion, suggesting that the N-terminal domain determines the folate substrate specificity. Recent structural studies have identified two unique folate binding sites, the omega loop in L. casei FPGS and the dihydropteroate binding loop in the E. coli enzyme. Mutants with swapped omega loops retained the activities and folate or pteroate binding properties of the rest of the enzyme. Mutating L. casei FPGS to contain an E. coli FPGS dihydropteroate binding loop did not alter its substrate specificity to using dihydropteroate as a substrate. The mutant D154A, a residue specific for the dihydropteroate binding site in E. coli FPGS, and D151A, the corresponding mutant in the L. casei enzyme, were both defective in using tetrahydrofolate as their substrate, suggesting that the binding site corresponding to the E. coli pteroate binding site is also the tetrahydrofolate binding site for both enzymes. Tetrahydrofolate diglutamate was a slightly less effective substrate than the monoglutamate with the wild-type enzyme but was a 40-fold more effective substrate with the D151A mutant. This suggests that the 5,10-methylenetetrahydrofolate binding site identified in the L. casei ternary structure may bind diglutamate and polyglutamate folate derivatives.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi701670yDOI Listing

Publication Analysis

Top Keywords

binding site
20
coli fpgs
12
pteroate binding
12
dihydropteroate binding
12
binding
10
folylpolyglutamate synthetase
8
amino terminal
8
folate pteroate
8
binding properties
8
substrate specificity
8

Similar Publications

Infection with Influenza A virus (IAV) induces severe inflammatory responses and lung injury, contributing significantly to mortality and morbidity rates. Alterations in the microbial composition of the lungs and intestinal tract resulting from infection could influence disease progression and treatment outcomes. Xiyanping (XYP) injection has demonstrated efficacy in clinical treatment across various viral infections.

View Article and Find Full Text PDF

T cell immune evasion by SARS-CoV-2 JN.1 escapees targeting two cytotoxic T cell epitope hotspots.

Nat Immunol

January 2025

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.

Although antibody escape is observed in emerging severe acute respiratory syndrome coronavirus 2 variants, T cell escape, especially after the global circulation of BA.2.86/JN.

View Article and Find Full Text PDF

Microneedle-delivered adeno-associated virus vaccine amplified anti-viral immunity by improving antigen-presenting cells infection.

J Control Release

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China. Electronic address:

Adeno-associated viruses (AAV) have significant potential as vaccine carriers due to their excellent biosafety and efficient antigen gene delivery. However, most AAV vaccines show limited capacity to transduce antigen-presenting cells (APCs) following intramuscular injection which may cause inadequate cellular immune responses and undesired side effects due to transducing other tissues or cells. Herein, we developed a soluble microneedle patch for targeting the AAV vaccines to the epidermal and dermal APCs.

View Article and Find Full Text PDF

IN SILICO AND IN VITRO ASSESSMENT OF ANTI-Leishmania infantum ACTIVITY OF A NOVEL CYCLOHEXYL-1,2,4-OXADIAZOLE DERIVATIVE.

Mol Biochem Parasitol

January 2025

Post-graduate Program in Pharmaceutical Sciences, Federal University of Ceará, Fortaleza - CE, Brazil; Fundação Oswaldo Cruz, Fiocruz, Fiocruz Ceará, Eusébio - CE, Brazil; Northeast Network of Biotechnology (RENORBIO), State University of Ceará (UECE), Fortaleza - CE, Brazil.

Globally, an estimated 1 billion people reside in endemic areas, and over 12 million individuals are infected with leishmaniasis. Despite its prevalence, leishmaniasis continues to be a neglected disease, mainly affecting underdeveloped countries. In Brazil, the available treatments are pentavalent antimonials and Amphotericin B, which are outdated, toxic, require prolonged parenteral administration and have limited efficacy.

View Article and Find Full Text PDF

Dual modality feature fused neural network integrating binding site information for drug target affinity prediction.

NPJ Digit Med

January 2025

State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.

Accurately predicting binding affinities between drugs and targets is crucial for drug discovery but remains challenging due to the complexity of modeling interactions between small drug and large targets. This study proposes DMFF-DTA, a dual-modality neural network model integrates sequence and graph structure information from drugs and proteins for drug-target affinity prediction. The model introduces a binding site-focused graph construction approach to extract binding information, enabling more balanced and efficient modeling of drug-target interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!