The hydroponic culture experiments of soybean bean seedlings were conducted to investigate the effect of lanthanum (La) on nitrogen metabolism under two different levels of elevated UV-B radiation (UV-B, 280-320 nm). The whole process of nitrogen metabolism involves uptake and transport of nitrate, nitrate assimilation, ammonium assimilation, amino acid biosynthesis, and protein synthesis. Compared with the control, UV-B radiation with the intensity of low level 0.15 W/m2 and high level 0.45 W/m2 significantly affected the whole nitrogen metabolism in soybean seedlings (p < 0.05). It restricted uptake and transport of NO3(-), inhibited activity of some key nitrogen-metabolism-related enzymes, such as: nitrate reductase (NR) to the nitrate reduction, glutamine systhetase (GS) and glutamine synthase (GOGAT) to the ammonia assimilation, while it increased the content of free amino acids and decreased that of soluble protein as well. The damage effect of high level of UV-B radiation on nitrogen metabolism was greater than that of low level. And UV-B radiation promoted the activity of the anti-adversity enzyme glutamate dehydrogenase (GDH), which reduced the toxicity of excess ammonia in plant. After pretreatment with the optimum concentration of La (20 mg/L), La could increase the activity of NR, GS, GOGAT, and GDH, and ammonia assimilation, but decrease nitrate and ammonia accumulation. In conclusion, La could relieve the damage effect of UV-B radiation on plant by regulating nitrogen metabolism process, and its alleviating effect under low level was better than that under the high one.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1001-0742(07)60222-8 | DOI Listing |
ISME Commun
January 2025
Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
Rivers serve important functions for human society and are significantly impacted by anthropogenic nutrient inputs (e.g. organic and sulfur compounds).
View Article and Find Full Text PDFFront Microbiol
January 2025
Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.
Strain LCG007, isolated from Lu Chao Harbor's intertidal water, phylogenetically represents a novel genus within the family Rhodobacteraceae. Metabolically, it possesses a wide array of amino acid metabolic genes that enable it to thrive on both amino acids or peptides. Also, it could hydrolyze peptides containing D-amino acids, highlighting its potential role in the cycling of refractory organic matter.
View Article and Find Full Text PDFFront Microbiol
January 2025
Chongqing Sweet Pet Products Co., Ltd., Chongqing, China.
Ensuring companion animal welfare is a top priority for the pet industry and owners alike. The health of the pets can be directly and effectively improved through diet. Chenpi includes beneficial ingredients with proven anti-inflammatory, antioxidant, and immunomodulatory properties.
View Article and Find Full Text PDFMol Med
January 2025
Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Gangnamdae-ro 540, Seoul, 135-896, Republic of Korea.
Background: Inflammation is a critical protective response in the body, essential for combating infections and healing injuries. However, chronic inflammation can be harmful and significantly contribute to the development and progression of chronic diseases, with macrophage-mediated responses being central to these processes. This study presents "SBR-Pel," a new therapeutic blend of Shinbaro tab (SBR), a traditional herbal formula, and pelubiprofen (Pel), a non-steroidal anti-inflammatory drug, and investigated their combined anti-inflammatory effects to create a treatment that both improves efficacy and reduces side effects.
View Article and Find Full Text PDFCommun Biol
January 2025
Dept of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, USA.
Grasslands cover approximately a third of the Earth's land surface and account for about a third of terrestrial carbon storage. Yet, we lack strong predictive models of grassland plant biomass, the primary source of carbon in grasslands. This lack of predictive ability may arise from the assumption of linear relationships between plant biomass and the environment and an underestimation of interactions of environmental variables.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!