Primary culture of alveolar epithelial type II cells and its bionomic study.

J Huazhong Univ Sci Technolog Med Sci

Research Institute of Respiratory Diseases, Department of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.

Published: December 2007

To establish a better method of primary culture for alveolar epithelial type II cells (AEC II) and to study its bionomics, alveolar epithelial type II cells were isolated by digestion with trypsin and collagenase, which were then purified by plated into culture flask coated with rat immunoglobulin G. The purified AEC II were identified by alkaline phosphatase staining, electron microscopy, immunocytochemical staining of pulmonary surfactant protein A (SPA). The SPA expression and transfection characteristics were compared with those of A549 cell line. The results showed that AEC II could be isolated by digestion with trysin and collagenase and purified by adhesive purification by using IgG, with a yield of about 2-3 x 10(7), and a purity of about 75%-84%. Cells could be quickly identified with AKP staining. AEC II were different from A549 cell line in terms of SPA expression and transfection characteristics. It is concluded that adhesive purification with IgG can improve the purity of AEC II, and AKP staining is simple in cell identification. AEC II can not be completely replaced by A549 cells in some studies because the differences between them, such as SPA expression.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11596-007-0608-xDOI Listing

Publication Analysis

Top Keywords

alveolar epithelial
12
epithelial type
12
type cells
12
spa expression
12
primary culture
8
culture alveolar
8
isolated digestion
8
collagenase purified
8
expression transfection
8
transfection characteristics
8

Similar Publications

The epithelial-mesenchymal transition (EMT) is a biological process in which epithelial cells change into mesenchymal cells with fibroblast-like characteristics. EMT plays a crucial role in the progression of fibrosis. Classical inducers associated with the maintenance of EMT, such as TGF-β1, have become targets of several anti-EMT therapeutic strategies.

View Article and Find Full Text PDF

Restoring natural killer cell activity in lung injury with 1,25-hydroxy vitamin D: a promising therapeutic approach.

Front Immunol

January 2025

Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.

Background And Aim: NK cells and NK-cell-derived cytokines were shown to regulate neutrophil activation in acute lung injury (ALI). However, the extent to which ALI regulates lung tissue-resident NK (trNK) activity and their molecular phenotypic alterations are not well defined. We aimed to assess the impact of 1,25-hydroxy-vitamin-D3 [1,125(OH)D] on ALI clinical outcome in a mouse model and effects on lung trNK cell activations.

View Article and Find Full Text PDF

Sepsis-induced acute lung injury (ALI) remains a leading cause of mortality in critically ill patients. Macrophages, key modulators of immune responses, play a dual role in both promoting and resolving inflammation. Exosomes, small extracellular vesicles released by various cells, carry bioactive molecules that influence macrophage polarization and immune responses.

View Article and Find Full Text PDF

Improved Annotation of Asthma Gene Variants with Cell Type Deconvolution of Nasal and Lung Expression-Quantitative Trait Loci.

Am J Respir Cell Mol Biol

January 2025

University of Groningen, University Medical Center Groningen, Department of Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, Netherlands.

Asthma is a genetically complex inflammatory airway disease associated with over 200 Single nucleotide polymorphisms (SNPs). However, the functional effects of many asthma-associated SNPs in lung and airway epithelial samples are unknown. Here, we aimed to conduct expression quantitative trait loci (eQTL) analysis using a meta-analysis of nasal and lung samples.

View Article and Find Full Text PDF

Parkin deficiency aggravates inflammation-induced acute lung injury by promoting necroptosis in alveolar type II cells.

Chin Med J Pulm Crit Care Med

December 2024

Medical Research Center; The Zhejiang Key Laboratory of Intelligent Cancer, Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.

Background: Necroptosis is a form of programmed cell death resulting in tissue inflammation due to the release of intracellular contents. Its role and regulatory mechanism in the context of acute lung injury (ALI) are unclear. Parkin (Prkn), an E3 ubiquitin ligase, has recently been implicated in the regulation of necroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!