Nano-sized lipid vesicles with tailored properties have been used as building blocks to generate lipid tubules between two glass surfaces. The tubules formed not only have defined orientation, width, and length, but they can also grow to be as long as 13 mm under ambient conditions, without externally supplied flow, temperature control, or catalyzing agents. Tubule membrane and its internal aqueous content can be manipulated by controlling the combination of different vesicle's lipid composition and aqueous entrapment. This self-assembly process opens up new pathways for generating complicated and flexible architectures for use in biocompatible molecular and supramolecular engineering. We demonstrated these possibilities by generating tubules encapsulated with siRNA, tubules with multiple branches, and polymerized fluorescent tubules in a single-throughput self-assembly process.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b713930fDOI Listing

Publication Analysis

Top Keywords

lipid tubules
8
building blocks
8
self-assembly process
8
tubules
6
engineering lipid
4
tubules nano-sized
4
nano-sized building
4
blocks combinatorial
4
combinatorial self-assembly
4
self-assembly vesicles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!