A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hsc70 focus formation at the periphery of HSV-1 transcription sites requires ICP27. | LitMetric

Hsc70 focus formation at the periphery of HSV-1 transcription sites requires ICP27.

PLoS One

Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, USA.

Published: January 2008

Background: The cellular chaperone protein Hsc70, along with components of the 26S proteasome and ubiquitin-conjugated proteins have been shown to be sequestered in discrete foci in the nuclei of herpes simplex virus 1 (HSV-1) infected cells. We recently reported that cellular RNA polymerase II (RNAP II) undergoes proteasomal degradation during robust HSV-1 transcription, and that the immediate early protein ICP27 interacts with the C-terminal domain and is involved in the recruitment of RNAP II to viral transcription/replication compartments.

Methodology/principle Findings: Here we show that ICP27 also interacts with Hsc70, and is required for the formation of Hsc70 nuclear foci. During infection with ICP27 mutants that are unable to recruit RNAP II to viral replication sites, viral transcript levels were greatly reduced, viral replication compartments were poorly formed and Hsc70 focus formation was curtailed. Further, a dominant negative Hsc70 mutant that cannot hydrolyze ATP, interfered with RNAP II degradation during HSV-1 infection, and an increase in ubiquitinated forms of RNAP II was observed. There was also a decrease in virus yields, indicating that proteasomal degradation of stalled RNAP II complexes during robust HSV-1 transcription and replication benefits viral gene expression.

Conclusions/significance: We propose that one function of the Hsc70 nuclear foci may be to serve to facilitate the process of clearing stalled RNAP II complexes from viral genomes during times of highly active transcription.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2200795PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001491PLOS

Publication Analysis

Top Keywords

hsv-1 transcription
12
hsc70 focus
8
focus formation
8
proteasomal degradation
8
robust hsv-1
8
icp27 interacts
8
rnap viral
8
hsc70 nuclear
8
nuclear foci
8
viral replication
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!