Growth-regulated proteins (GRPs) of the neuron are synthesized during outgrowth and regeneration at an increased rate and enriched in nerve growth cones. Therefore, they can be used to some degree as markers of neurite growth. However, these proteins are not unique to the growing neuron, and their properties are not known sufficiently to assign them a functional and/or causal role in the mechanisms of outgrowth. During synaptogenesis, GRPs decrease in abundance, and growth cone functions of motility and organelle assembly are being replaced by junctional contact and transmitter release. However, there is a stage during which growth cone and synaptic properties overlap to some degree. We propose that it is this overlap and its continuation that allow for synaptic plasticity in developing and adult nervous systems. We also propose a hypothesis involving (a) trophic factor(s) that might explain the regulation of synaptic sizes and collateral sprouting. Some GRPs, especially GAP43/B50/pp46/F1, are more prominent in adult brain regions of high plasticity, and they undergo change, such as phosphorylation, during long-term potentiation (LTP). Without precise functional knowledge of GRPs, it is impossible to use changes in such proteins to explain the plasticity mechanism. However, changes in these "growth markers" are likely to be an indication of sprouting activity, which would explain well the various phenomena associated with plasticity and learning in the adult. Thus, plasticity and memory may be viewed as a continuation of the developmental process into adulthood.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02935543 | DOI Listing |
FASEB J
December 2024
Biology Department, Boston College, Chestnut Hill, Massachusetts, USA.
Numerous studies have reported altered cytokine levels in type 1 diabetes (T1D) patients, yet findings remain inconsistent. In this pilot study, we tested the hypothesis that circulating immune markers exhibit sex-based differences in T1D, both prior to and after disease onset. We analyzed 47-48 cytokine, chemokine, and growth factor levels in two cohorts.
View Article and Find Full Text PDFCurr Oncol
October 2024
Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland.
Neuroendocrine neoplasms (NENs) present a diagnostic challenge due to their heterogeneous nature and non-specific clinical manifestations. This study aimed to explore novel biomarkers for NENs. Serum chromogranin A (CgA) levels and a panel of 48 inflammatory cytokines were analyzed in a cohort of 84 NEN patients and 40 healthy controls using enzyme-linked immunosorbent assay (ELISA) and multiplex ELISA.
View Article and Find Full Text PDFExp Dermatol
September 2024
Department of Dermatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
Cytokine
November 2024
Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!