Evolution of protein domain promiscuity in eukaryotes.

Genome Res

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA.

Published: March 2008

Numerous eukaryotic proteins contain multiple domains. Certain domains show a tendency to occur in diverse domain architectures and can be considered "promiscuous." These promiscuous domains are, typically, involved in protein-protein interactions and play crucial roles in interaction networks, particularly those that contribute to signal transduction. A systematic comparative-genomic analysis of promiscuous domains in eukaryotes is described. Two quantitative measures of domain promiscuity are introduced and applied to the analysis of 28 genomes of diverse eukaryotes. Altogether, 215 domains are identified as strongly promiscuous. The fraction of promiscuous domains in animals is shown to be significantly greater than that in fungi or plants. Evolutionary reconstructions indicate that domain promiscuity is a volatile, relatively fast-changing feature of eukaryotic proteins, with few domains remaining promiscuous throughout the evolution of eukaryotes. Some domains appear to have attained promiscuity independently in different lineages, for example, animals and plants. It is proposed that promiscuous domains persist within a relatively small pool of evolutionarily stable domain combinations from which numerous rare architectures emerge during evolution. Domain promiscuity positively correlates with the number of experimentally detected domain interactions and with the strength of purifying selection affecting a domain. Thus, evolution of promiscuous domains seems to be constrained by the diversity of their interaction partners. The set of promiscuous domains is enriched for domains mediating protein-protein interactions that are involved in various forms of signal transduction, especially in the ubiquitin system and in chromatin. Thus, a limited repertoire of promiscuous domains makes a major contribution to the diversity and evolvability of eukaryotic proteomes and signaling networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2259109PMC
http://dx.doi.org/10.1101/gr.6943508DOI Listing

Publication Analysis

Top Keywords

promiscuous domains
28
domain promiscuity
16
domains
13
promiscuous
9
domain
8
eukaryotic proteins
8
protein-protein interactions
8
signal transduction
8
promiscuity
5
evolution
4

Similar Publications

Real-Time Observation of Clickable Cyanotoxin Synthesis in Bloom-Forming Cyanobacteria and .

Toxins (Basel)

December 2024

Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, 5310 Mondsee, Austria.

Recently, the use of click chemistry for localization of chemically modified cyanopeptides has been introduced, i.e., taking advantage of promiscuous adenylation (A) domains in non-ribosomal peptide synthesis (NRPS), allowing for the incorporation of clickable non-natural amino acids (non-AAs) into their peptide products.

View Article and Find Full Text PDF

Dynamic analysis of frequency specificity in multilayer brain networks.

Brain Res

December 2024

Department of Nuclear Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China. Electronic address:

The brain is a highly complex and delicate system, and its internal neural processes are manifested as the interweaving and superposition of multi-frequency neural signals. However, traditional brain network studies are often limited to the whole frequency band or a specific frequency band, ignoring the potentially profound impact of the diversity of information within the frequency on the dynamics of brain networks. To comprehensively and deeply analyze this phenomenon, the present study is devoted to exploring the specific performance of brain networks at different frequencies.

View Article and Find Full Text PDF

Characterization of intact FeoB in a lipid bilayer using styrene-maleic acid (SMA) copolymers.

Biochim Biophys Acta Biomembr

December 2024

Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA. Electronic address:

The acquisition of ferrous iron (Fe) is crucial for the survival of many pathogenic bacteria living within acidic and/or anoxic conditions such as Vibrio cholerae, the causative agent of the disease cholera. Bacterial pathogens utilize iron as a cofactor to drive essential metabolic processes, and the primary prokaryotic Fe acquisition mechanism is the ferrous iron transport (Feo) system. In V.

View Article and Find Full Text PDF
Article Synopsis
  • Polyphosphate kinase 2 (PPK2) enzymes are key to transferring phosphate to nucleotides and are categorized into three classes, each with unique preferences.
  • The study of PPK2's distribution among prokaryotes helps understand its evolutionary history and potential adaptations across various species.
  • Observations revealed a significant preference for Class I enzymes in species with multiple PPK2 genes, alongside insights about gene duplication and possible functional versatility that challenge previous understandings of PPK2 evolution.
View Article and Find Full Text PDF

MYOD is an E-box sequence-specific basic Helix-Loop-Helix (bHLH) transcriptional activator that, when expressed in non-muscle cells, induces nuclear reprogramming toward skeletal myogenesis by promoting chromatin accessibility at previously silent loci. Here, we report on the identification of a previously unrecognized property of MYOD as repressor of gene expression, via E-box-independent chromatin binding within accessible genomic elements, which invariably leads to reduced chromatin accessibility. MYOD-mediated repression requires the integrity of functional domains previously implicated in MYOD-mediated activation of gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!