Loss-of-function mutations in the PTEN-induced kinase 1 (PINK1) or parkin genes, which encode a mitochondrially localized serine/threonine kinase and a ubiquitin-protein ligase, respectively, result in recessive familial forms of Parkinsonism. Genetic studies in Drosophila indicate that PINK1 acts upstream of Parkin in a common pathway that influences mitochondrial integrity in a subset of tissues, including flight muscle and dopaminergic neurons. The mechanism by which PINK1 and Parkin influence mitochondrial integrity is currently unknown, although mutations in the PINK1 and parkin genes result in enlarged or swollen mitochondria, suggesting a possible regulatory role for the PINK1/Parkin pathway in mitochondrial morphology. To address this hypothesis, we examined the influence of genetic alterations affecting the machinery that governs mitochondrial morphology on the PINK1 and parkin mutant phenotypes. We report that heterozygous loss-of-function mutations of drp1, which encodes a key mitochondrial fission-promoting component, are largely lethal in a PINK1 or parkin mutant background. Conversely, the flight muscle degeneration and mitochondrial morphological alterations that result from mutations in PINK1 and parkin are strongly suppressed by increased drp1 gene dosage and by heterozygous loss-of-function mutations affecting the mitochondrial fusion-promoting factors OPA1 and Mfn2. Finally, we find that an eye phenotype associated with increased PINK1/Parkin pathway activity is suppressed by perturbations that reduce mitochondrial fission and enhanced by perturbations that reduce mitochondrial fusion. Our studies suggest that the PINK1/Parkin pathway promotes mitochondrial fission and that the loss of mitochondrial and tissue integrity in PINK1 and parkin mutants derives from reduced mitochondrial fission.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2234197 | PMC |
http://dx.doi.org/10.1073/pnas.0709336105 | DOI Listing |
Poult Sci
January 2025
Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China. Electronic address:
As a significant emerging and re-emerging pathogen in China, the widely spread of Duck Tembusu virus (DTMUV) caused enormous economic losses to poultry industry. On account of DTMUV diseases' main symptoms on haemorrhagic oophoritis, intensive attentions were focused on female reproductive organ. Nevertheless, the DTMUV infection of sperm and testis manifested that testis was an important vector for vertical transmission of DTMUV.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
January 2025
ZHANG Zhongjing School of Chinese Medicine, Rheumatology and Immunology, Nanyang Traditional Chinese Medicine Hospital, Nanyang 473004, China.
Objectives: To investigate the protective effect of Formula (YYHT) against high glucose-induced injury in mouse renal podocytes (MPC5 cells) and the possible mechanism.
Methods: Adult Wistar rats were treated with 19, 38, and 76 g/kg YYHT or saline via gavage for 7 days to prepare YYHT-medicated or blank sera for treatment of MPC5 cells cultured in high glucose (30 mmol/L) prior to transfection with a miR-21a-5p inhibitor or a miR-21a-5p mimic. The changes in miR-21a-5p expressions and the mRNA levels of FoxO1, PINK1, and Parkin in the treated cells were detected with qRT-PCR, and the protein levels of nephrin, podocin, FoxO1, PINK1, and Parkin were detected with Western blotting.
Tissue Cell
January 2025
Department of Endocrinology, Fuyang Cancer Hospital, Fuyang, Anhui Province 236000, PR China. Electronic address:
Background: Diabetes mellitus (DM), a chronic metabolic disease, is characterized by long-term hyperglycemia resulting from the defect of insulin production and insulin resistance. The damage and dysfunction of pancreatic β-cells is a main link in DM development.
Methods: In this work, pancreatic β-cell line INS-1E cells were exposed to 30 mM glucose for 48 h to construct an in vitro DM model.
Eur J Med Res
January 2025
Department of Nephrology, Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), No.1882, Zhonghuan North Road, Jiaxing, 314000, Zhejiang, China.
Background: Dysfunction in podocyte mitophagy has been identified as a contributing factor to the onset and progression of diabetic nephropathy (DN), and BMAL1 plays an important role in the regulation of mitophagy. Thus, this study intended to examine the impact of BMAL1 on podocyte mitophagy in DN and elucidate its underlying mechanisms.
Materials And Methods: High D-glucose (HG)-treated MPC5 cells was used as a podocyte injury model for investigating the potential roles of BMAL1 in DN.
Skelet Muscle
January 2025
Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!