Metal activation of metallothionein (MT) gene transcription is dependent on the presence of metal regulatory elements (MREs), which are present in five non-identical copies (MREa through MREe) in the promoter of the mouse MT-1 gene and on the capacity of metal transcription factor-1 (MTF-1) to bind to the MREs in the presence of zinc. We detected a protein, distinct from MTF-1, specifically binding to the MREc region. DNA binding competition experiments using synthetic oligonucleotides and specific anti-NF1 antibodies showed that this protein binds to an NF1 site overlapping the MREc element as well as to a second site upstream of the Sp1a site and corresponds to NF1 or a related protein. Transfection experiments showed that loss of the two NF1 sites decreased metal-induced MT promoter activity by 55-70% in transiently transfected cells and almost completely abrogated metal and tert-butylhydroquinone (tBHQ) induction in stably transfected cells. Similarly, expression of an inactive NF1 protein strongly inhibited MT-1 promoter activity. Using synthetic promoters containing NF1 and MRE sites fused to a minimal MT promoter, we showed that these NF1 sites did not confer metal induction but enhanced metal-induced promoter activity. Chromatin immunoprecipitation assays confirmed that NF1 binds to the mouse MT-1 promoter in vivo and showed that NF1 binding is zinc-inducible. In addition, zinc-induced NF1 DNA binding was MTF-1-dependent. Taken together, these studies show that NF1 acts synergistically with MTF-1 to activate the mouse MT-1 promoter in response to metal ions and tert-butylhydroquinone and contributes to maximal activation of the gene.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M800640200DOI Listing

Publication Analysis

Top Keywords

mouse mt-1
12
promoter activity
12
mt-1 promoter
12
nf1
10
metal
8
metal transcription
8
transcription factor-1
8
activate mouse
8
response metal
8
metal ions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!