Gold nanoparticles of 5 nm diameter, stabilized by 4-(dimethylamino)pyridine (DMAP), were coated with poly(sodium 4-styrene sulfonate) (PSS) via electrostatic self-assembly. The suspension stability, monitored by the gold surface plasmon band (SPB), was studied by varying the pH, the PSS chain length, and PSS concentration. Enhanced stability is obtained at pH 10 (above the pKa of DMAP) when the polymer chain length matches or exceeds the particle circumference. Solid state 13C NMR was used to determine the presence of DMAP and polymers after subsequent deposition of weak and strong polycations: poly(allylamine hydrochloride) (PAH) and poly(diallyldimethylammonium chloride) (PDADMAC). At pH 10, DMAP remains associated with the nanoparticle after the first PSS layer has been formed. When PAH or PDADMAC are subsequently added at pH 4.5, DMAP is expelled, the suspensions remain stable, and zeta potential values indicate complete charge reversal. In the case of PDADMAC, however, the first layer of PSS is not fully retained. When PDADMAC is added at pH 10, DMAP and the first PSS layer are retained but lower zeta potentials and a higher SPB shift indicate a degraded stability. For PAH addition at pH 9.5, both DMAP and PSS are expelled and the suspension becomes unstable. These differences in stability of the multilayer components and the nanoparticle suspension are rationalized in terms of chain flexibility, polymer charge density, and the ability of the polymer functional groups to directly interact with the gold surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la703003m | DOI Listing |
Mikrochim Acta
January 2025
Tyndall National Institute, University College Cork, Lee Maltings Complex, Dyke Parade, Cork, T12R5CP, Ireland.
Therapeutic and misuse of veterinary drugs, such as antibiotics, can increase the potential risk of residue contamination in animal-derived food products. For milk, these residual antibiotics can have an impact on efficiency in dairy processing factories, as well as economic loss, and can also cause side effects on consumer health. Lateral flow immunoassays (LFIAs) are gaining popularity for their ease of use, low cost and their fulfilment to the REASSURED (real-time connection/monitoring, easy sampling, affordable, specific, user-friendly, rapid/robust, equipment free, deliverable to end user) criteria.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain.
In three-dimensional (3D)-printed tissue models, sensitive, noninvasive techniques are required to detect changes in hydrogel structure caused by cellular remodeling. We demonstrate herein that circular dichroism (CD) spectroscopy provides a reliable method for detecting hydrogel structural variations. We probe directly the plasmonic optical activity of chiral gold nanorods (c-AuNRs) embedded within the hydrogel matrix, in response to variations in the local environment.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Faculty of Chemistry, University of Gdansk, Wita Stwosza, 6380308, Gdańsk, Poland.
The medical and cosmetic industries have developed in recent years, there has been a growing demand for new materials. Gold nanoparticles (Au NPs) and chitosan (CS) have been known and used for many years. Unfortunately, despite their numerous advantages and possible applications, such materials may possess certain disadvantages and limitations that constitute a problem in medical or cosmetic applications.
View Article and Find Full Text PDF[This retracts the article DOI: 10.1039/D1RA04834A.].
View Article and Find Full Text PDFLab Chip
January 2025
Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
Nucleic acid testing (NAT) is widely considered the gold standard in analytical fields, with applications spanning environmental monitoring, forensic science and clinical diagnostics, among others. However, its widespread use is often constrained by complicated assay procedures, the need for specialized equipment, and the complexity of reagent handling. In this study, we demonstrate a fully integrated 3D-printed biosensensing device employing a CRISPR/Cas12a-based dual-enzymatic mechanism for highly sensitive and user-friendly nucleic acid detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!