We present a new model and learning algorithm, GenMiR3, which takes into account mRNA sequence features in addition to paired mRNA and miRNA expression profiles when scoring candidate miRNA-mRNA interactions. We evaluate three candidate sequence features for predicting miRNA targets by assessing the expression support for the predictions of each feature and the consistency of Gene Ontology Biological Process annotation of their target sets. We consider as sequence features the total energy of hybridization between the microRNA and target, conservation of the target site and the context score which is a composite of five individual sequence features. We demonstrate that only the total energy of hybridization is predictive of paired miRNA and mRNA expression data and Gene Ontology enrichment but this feature adds little to the total accuracy of GenMiR3 predictions using for expression features alone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1142/9789812776136_0007 | DOI Listing |
Front Immunol
January 2025
Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hosipital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
In this article, we report the first case of a 61-year-old woman who was diagnosed with both nodules and cystic lesions in her lungs. The lung nodules were diagnosed as ALK-positive histiocytosis (APH) carrying an gene fusion, which microscopically displayed a mixed morphology of foamy cells, spindle cells, and Touton's giant cells. Immunohistochemistry showed expression of CD163, CD68, and ALK, while fluorescence hybridization (FISH) with second-generation sequencing (NGS) showed the ALK gene fusion with the FLCN gene variant.
View Article and Find Full Text PDFFront Immunol
January 2025
Rehabilitation Medicine Department, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University (The First Hospital of Changsha, Changsha, China.
Tuberculous meningitis (TBM), a severe form of non-purulent meningitis caused by (Mtb), is the most critical extrapulmonary tuberculosis (TB) manifestation, with a 30-40% mortality rate despite available treatment. The absence of distinctive clinical symptoms and effective diagnostic tools complicates early detection. Recent advancements in nucleic acid detection, genomics, metabolomics, and proteomics have led to novel diagnostic approaches, improving sensitivity and specificity.
View Article and Find Full Text PDFCytotechnology
April 2025
Department of Genetics, Osmania University, Hyderabad, Telangana State India.
Targeting tumor angiogenesis with safe endogenous protein inhibitors is a promising therapeutic approach despite the plethora of the first line of emerging chemotherapeutic drugs. The extracellular matrix network in the blood vessel basement membrane and growth factors released from endothelial and tumor cells promote the neovascularization which supports the tumor growth. Contrastingly, small cleaved cryptic fragments of the C-terminal non collagenous domains of the same basement membrane display antiangiogenic effect.
View Article and Find Full Text PDFPak J Med Sci
January 2025
Lamei Yuan, MD, PhD, Health Management Center, the Third Xiangya Hospital, Disease Genome Research Center, Center for Experimental Medicine, the Third Xiangya Hospital, Research Center of Medical Experimental Technology, the Third Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China.
Objective: To identify the disease-causing variant in a family with tuberous sclerosis complex (TSC).
Methods: This study including a Han-Chinese pedigree recruited from the Third Xiangya Hospital, Central South University, Changsha, Hunan, China was conducted between February, 2019 and January, 2023. Detailed clinical examinations were performed on the proband and other family members of a Han-Chinese family with TSC.
PNAS Nexus
January 2025
Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
Here, we present Link-Seq, a highly efficient droplet microfluidic method for combined sequencing of antibody-encoding genes and the transcriptome of individual B cells at large scale. The method is based on 3' barcoding of the transcriptome and subsequent single-molecule PCR in droplets, which freely shift the barcode along specific gene regions, such as the antibody heavy- and light-chain genes. Using the immune repertoire of COVID-19 patients and healthy donors as a model system, we obtain up to 91.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!