This unit presents two methods of calcium phosphate-based eukaryotic cell transfection that can be used for both transient and stable transfections. In these protocols, plasmid DNA is introduced to monolayer cell cultures via a precipitate that adheres to the cell surface. A HEPES-buffered solution is used to form a calcium phosphate precipitate that is directly layered onto the cells. For some cells, shocking the cells with glycerol or DMSO improves transfection efficiency. In the alternate high-efficiency method, a BES-buffered system is used that allows the precipitate to form gradually in the medium and then drop onto the cells. While the alternate method is particularly efficient for stable transformation of cells with circular plasmid DNA, both protocols yield similar results for transformation with linear plasmid or genomic DNA, or for transient expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/0471143030.cb2003s19 | DOI Listing |
Bioact Mater
April 2025
Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China.
Bone defect repair remains a great challenge in the field of orthopedics. Human body essential trace element such as copper is essential for bone regeneration, but how to use it in bone defects and the underlying its mechanisms of promoting bone formation need to be further explored. In this study, by doping copper into mesoporous bioactive glass nanoparticles (Cu-MBGNs), we unveil a previously unidentified role of copper in facilitating osteoblast mitophagy and mitochondrial dynamics, which enhance amorphous calcium phosphate (ACP) release and subsequent biomineralization, ultimately accelerating the process of bone regeneration.
View Article and Find Full Text PDFMater Today Bio
February 2025
Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea.
Spinal fusion surgery remains a significant challenge due to limitations in current bone graft materials, particularly in terms of bioactivity, integration, and safety. This study presents an innovative approach using an injectable hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) hydrogel combined with stromal vascular fraction (SVF) and low-dose recombinant human BMP-2 (rhBMP-2) to enhance osteodifferentiation and angiogenesis. Through a series of in vitro studies and preclinical models involving rats and minipigs, we demonstrated that the hydrogel system enables the sustained release of rhBMP-2, resulting in significantly improved bone density and integration, alongside reduced inflammatory responses.
View Article and Find Full Text PDFSmall
January 2025
School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China.
Flexible hybrid minerals, primarily composed of inorganic ionic crystal nanolines and a small amount of organic molecules, have significant potential for the development of sustainable structural materials. However, the weak interactions and insufficient crosslinking among the inorganic nanolines limit the mechanical enhancement and application of these hybrid minerals in high-strength structural materials. Inspired by tough biominerals and modern reinforced concrete structures, this study proposes introducing an aramid nanofiber (ANF) network as a flexible framework during the polymerization of calcium phosphate oligomers (CPO), crosslinked by polyvinyl alcohol (PVA) and sodium alginate (SA).
View Article and Find Full Text PDFArtificial bone, primarily composed of calcium carbonate, demonstrates a higher resorption rate than calcium phosphate-based counterparts, suggesting potential for early bone replacement. Animal experiments using porous calcium carbonate ceramics have demonstrated bone formation superior to commercially available artificial bone after short-term implantation. Long-term implantation has yielded suboptimal results owing to resorption of both newly formed bone and implantation material.
View Article and Find Full Text PDFTrans R Soc Trop Med Hyg
January 2025
Department of Medical Parasitology, Medical school, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran.
Background: Leishmaniasis represents a significant parasitic disease with global health implications, and the development of an affordable and effective vaccine could provide a valuable solution. This study aimed to evaluate the immunogenicity of a DNA vaccine targeting Leishmania major specifically based on the Leishmania-activated C kinase (LACK) antigen, utilizing calcium phosphate nanoparticles (CaPNs) and chitosan nanoparticles (ChitNs) as adjuvants.
Methods: Seventy female BALB/c mice, aged 4-6 wk and weighing 20-22 g, were selected and divided into five groups, each consisting of 14 mice.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!