Bone morphogenetic protein-15 (BMP-15) is an oocyte-secreted factor critical for the regulation of ovarian physiology. When recombinant human BMP-15 (rhBMP-15) produced in human embryonic kidney 293 cells was subjected to SDS-PAGE analysis, two mature protein forms corresponding to 16 kDa (P16) and 17 kDa (P17) were observed. Despite the physiological relevance and critical function of BMP-15 in female reproduction, little is known about the structure of rhBMP-15. Here, we have analyzed the structure of the rhBMP-15 mature proteins (P16 and P17) using state-of-the-art proteomics technology. Our findings are as follows: (1) the N-terminal amino acid of P16 and P17 is pyroglutamic acid; (2) the Ser residue at the sixth position of P16 is phosphorylated; (3) P17 is O-glycosylated at Thr10; and (4) the C-terminal amino acid of P16 and P17 is truncated. These findings are the first knowledge of the structure of rhBMP-15 mature protein toward understanding the molecular basis of BMP-15 function and could provide an important contribution to the rapidly progressing research area involving oocyte-specific growth factors in modulation of female fertility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2222730 | PMC |
http://dx.doi.org/10.1110/ps.073232608 | DOI Listing |
Commun Biol
January 2025
Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
Tight junctions (TJs) between adjacent Sertoli cells are believed to form immunological barriers that protect spermatogenic cells expressing autoantigens from autoimmune responses. However, there is no direct evidence that Sertoli cell TJs (SCTJs) do indeed form immunological barriers. Here, we analyzed male mice lacking claudin-11 (Cldn11), which encodes a SCTJ component, and found autoantibodies against antigens of spermatocytes/spermatids in their sera.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Prinsesse Kristinas gt. 1, Trondheim, 7030, Norway.
Restoration of the intestinal epithelial barrier is crucial for achieving mucosal healing, the therapeutic goal for inflammatory bowel disease (IBD). During homeostasis, epithelial renewal is maintained by crypt stem cells and progenitors that cease to divide as they differentiate into mature colonocytes. Inflammation is a major effector of mucosal damage in IBD and has been found to affect epithelial stemness, regeneration and cellular functions.
View Article and Find Full Text PDFNat Commun
January 2025
Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France.
Integrin clusters facilitate mechanical force transmission (mechanotransduction) and regulate biochemical signaling during cell adhesion. However, most studies have focused on rigid substrates. On fluid substrates like supported lipid bilayers (SLBs), integrin ligands are mobile, and adhesive complexes are traditionally thought unable to anchor for cell spreading.
View Article and Find Full Text PDFBlood Cancer J
January 2025
Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France.
GATA2 germline mutations lead to a syndrome characterized by immunodeficiency, vascular disorders and myeloid malignancies. To elucidate how these mutations affect hematopoietic homeostasis, we created a knock-in mouse model expressing the recurrent Gata2 R396Q missense mutation. Employing molecular and functional approaches, we investigated the mutation's impact on hematopoiesis, revealing significant alterations in the hematopoietic stem and progenitor (HSPC) compartment in young age.
View Article and Find Full Text PDFACS Nano
January 2025
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
Type-2-diabetes is a metabolic disorder where misfolding and oligomerization of islet amyloid polypeptide (IAPP) around islet-β cells oligomerizes and participates in the pathology. The oligomeric stage is toxic but transitory and leads to the formation of mature amyloid fibrils. The pathological specifics of mature amyloid fibrils are poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!