Glutaraldehyde (GA) is a high production volume chemical that is very reactive with a wide spectrum of medical, scientific and industrial applications. Since human exposure in anthropogenic and occupational environment occurs frequently, GA has been extensively tested for genotoxic activity in vitro and in vivo. However, there are conflicting results in the literature and there is a lack of information concerning the combined effects of exposure to both GA and ionizing radiation in human cells. In the present study, the results obtained using conventional cytogenetic analysis do not suggest a statistically significant clastogenic or genotoxic activity of GA when concentrations in the range of 10(-6) to 10(-2) mM were applied. However, a 24-h pre-irradiation exposure of human peripheral blood lymphocytes (PBLs) to non-genotoxic doses of GA showed a statistically significant (P > 0.05) increase in chromosomal radiosensitivity. The observed increase may be an effect of GA-induced alterations in the cell-cycle and feedback control mechanisms during the cell-cycle transition points or it may be a consequence of an effect of GA either on the DNA repair capacity of the cells after irradiation or on the initial induction of radiation-induced chromosomal damage. To elucidate the mechanism underlying the obtained radiosensitization, conventional cytogenetics, the G2 chromosomal radiosensitivity assay and premature chromosome condensation methodologies were applied. The results support the hypothesis that pre-irradiation exposure of PBLs to GA induces radiosensitization by increasing the initial yield of chromosomal aberrations following irradiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/mutage/gem049 | DOI Listing |
Radiat Res
January 2025
Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany.
It is thought that cells surviving ionizing radiation exposure repair DNA double-strand breaks (DSBs) and restore their genomes. However, the recent biochemical and genetic characterization of DSB repair pathways reveals that only homologous recombination (HR) can function in an error-free manner and that the non-homologous end joining (NHEJ) pathways canonical NHEJ (c-NHEJ), alternative end joining (alt-EJ), and single-strand annealing (SSA) are error-prone, and potentially leave behind genomic scars and altered genomes. The strong cell cycle restriction of HR to S/G2 phases and the unparalleled efficiency of c-NHEJ throughout the cell cycle, raise the intriguing question as to how far a surviving cell "reaches" after repairing the genome back to its pre-irradiation state.
View Article and Find Full Text PDFPLoS One
November 2024
Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America.
Multiple accidents in nuclear power plants and the growing concerns about the misuse of radiation exposure in warfare have called for the rapid determination of absorbed radiation doses (RDs). The latest findings about circulating microRNA (miRNAs) using several animal models revealed considerable promises, although translating this knowledge to clinics remains a major challenge. To address this issue, we randomly divided 36 nonhuman primates (NHPs) into six groups and exposed these groups to six different radiation doses ranging from 6.
View Article and Find Full Text PDFSichuan Da Xue Xue Bao Yi Xue Ban
September 2024
( 214400) Jiangyin Clinical College, Xuzhou Medical University, Wuxi 214400, China.
Objective: Radioactive intestinal injury is a common complication during radiotherapy of tumors. The aim of this study is to observe the effect of ionizing radiation on short-term changes in intestinal bile acids and to investigate the radioprotective effect of bile acids on intestinal cells.
Methods: A rat model of small intestinal injury was constructed by exposing the abdomen of the rats to daily irradiation at 2 Gy for 4 d in succession.
Radiat Res
July 2024
Department of Radiation Oncology, University of Florida, Gainesville, Florida.
Optimal triage biodosimetry would include risk stratification within minutes, and it would provide useful triage despite heterogeneous dosimetry, cytokine therapy, mixed radiation quality, race, and age. For regulatory approval, the U.S.
View Article and Find Full Text PDFIncreased radiological and nuclear threats require preparedness. Our earlier work identified a set of four genes (DDB2, FDXR, POU2AF1 and WNT3), which predicts severity of the hematological acute radiation syndrome (H-ARS) within the first three days postirradiation In this study of 41 Rhesus macaques (Macaca mulatta, 27 males, 14 females) irradiated with 5.8-7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!