AI Article Synopsis

  • The traditional microscopy method for identifying the Culicoides imicola species is slow and labor-intensive, highlighting the need for a faster tool.
  • A sensitive real-time PCR method was developed to detect C. imicola by targeting a specific ribosomal DNA region, allowing for precise quantification of the species in light trap catches.
  • Testing showed the PCR method has high specificity (92%) and sensitivity (95%), and performed well compared to morphological identification, making it a promising tool for monitoring C. imicola populations in surveillance and research.

Article Abstract

The current microscopy method for identifying the Culicoides imicola Kieffer, 1913 species can be time and labour intensive. There is a need for the development of a rapid and quantitative tool to quantify the biting midges C. imicola ss in light trap catches. A reproducible and sensitive real-time polymerase chain reaction method that targets the internal transcribed spacer (ITS-1) of ribosomal DNA of C. imicola ss species was developed. This real-time PCR assay was first performed on 10-fold serial dilutions of purified plasmid DNA containing specific C. imicola ss ITS-1. It was then possible to construct standard curves with a high correlation coefficient (r2=0.99) in the range of 10(-2)-10(-8) ng of purified DNA. The performances of this PCR were evaluated in comparison with morphological determination on Culicoides trapped along the Mediterranean coastal mainland France. ROC statistical analysis was carried out using morphology as gold standard and the area under the ROC curve had a satisfactory value of 0.9752. The results indicated that this real-time PCR assay holds promise for monitoring C. imicola ss population in both surveillance and research programmes because of its good specificity (92%) and sensitivity (95%).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rvsc.2007.12.001DOI Listing

Publication Analysis

Top Keywords

pcr assay
12
culicoides imicola
8
real-time pcr
8
imicola
6
development evaluation
4
real-time
4
evaluation real-time
4
real-time quantitative
4
pcr
4
quantitative pcr
4

Similar Publications

Characterization of novel mutations involved in the development of resistance to colistin in Salmonella isolates from retail pork in Shanghai, China.

Int J Food Microbiol

February 2025

MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Salmonella is an important foodborne pathogen that poses a significant threat to food safety. This study aims to assess the prevalence, genomic features, and colistin-resistant mechanisms of Salmonella isolates collected from 118 retail pork samples from January 2021 to January 2022 in Shanghai, China. Overall, 46 (39.

View Article and Find Full Text PDF

Objective: To investigate the role of long non-coding RNAs (lncRNAs) in the metabolic reprogramming of gastric cancer through their regulation of mesenchymal stem cells (MSCs) and HERPUD1 protein targets, aiming to elucidate mechanisms that could lead to novel therapeutic strategies.

Method: The RNA-seq was performed on BGC and hMSC-BGC cells to perform LncRNA screening. And we employed cell culture techniques using hMSC-BM and BGC823 cells, treated with various genetic interventions including siRNA and overexpression vectors.

View Article and Find Full Text PDF

Background: The endoplasmic reticulum stress (ER stress) has been involved in various musculoskeletal disorders including non-traumatic osteonecrosis of femoral head (NT-ONFH).

Objective: The current study aimed to investigate the association of glucose-regulated protein 78 (GRP78) as well as CCAAT/enhancer-binding protein homologous protein (CHOP) expressions in serum and femoral head (FH) tissues with NT-ONFH's severity.

Methods: We enrolled NT-ONFH patients (n = 150) alongside healthy controls (HCs, n = 150).

View Article and Find Full Text PDF

Resistance-breaking strains of tomato spotted wilt virus hamper photosynthesis and protein synthesis pathways in a virus accumulation-dependent manner in Sw5-carrying tomatoes.

Sci Rep

January 2025

Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, via Amendola 165/A, 70126, Bari, Italy.

Tomato spotted wilt virus (TSWV; Orthotospovirus tomatomaculae) is one of the major horticultural threats due to its worldwide distribution and broad host range. In Italy, TSWV is widely spread in tomato (Solanum lycopersicum) crops and causes severe yield losses. In the last decades, several tomato varieties carrying the Sw-5b gene for resistance to TSWV have been released.

View Article and Find Full Text PDF

Aims: Polycystic ovary syndrome (PCOS) is closely associated with metabolic disorders such as insulin resistance and obesity, but the role of adipogenesis in its pathophysiology remains unclear. This study investigates the role of adipogenesis in PCOS development and evaluates whether hyperoside (HPS), an anti-adipogenic herbal compound, can improve PCOS by inhibiting adipogenesis.

Main Methods: A combination of in vivo and in vitro models was used to assess the impact of HPS on ovarian function, insulin resistance, and adipogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!