AI Article Synopsis

  • Highly uniform spherical silica nanoparticles were created using a safe, water-based method, with sizes from around 15 to 200 nm.
  • The size can be adjusted easily through a regrowth process within the same reaction environment.
  • These nanoparticles are ideal for forming ordered structures and can be combined with functional additives for various applications.

Article Abstract

Highly monodisperse spherical silica nanoparticles with diameters ranging from ca. 15 to 200 nm were prepared using an environmentally friendly water-based synthesis. The size of the spheres can be precisely controlled by using a facile regrowth procedure in the same reaction media. Furthermore, these monodisperse silica spheres can be successfully used as seeds in the well-established Stöber silica preparation. The regrowth approach allows for easy incorporation of functional additives. High monodispersity and charge stabilization renders these nanoparticles highly suitable for close-packed array formation and colloidal templating.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la7025285DOI Listing

Publication Analysis

Top Keywords

highly monodisperse
8
silica spheres
8
colloidal templating
8
facile preparation
4
preparation highly
4
monodisperse small
4
silica
4
small silica
4
spheres >200
4
>200 suitable
4

Similar Publications

Manufacturing of Liposomes Using a Stainless-Steel Microfluidic Device: An Investigation into Design of Experiments.

Langmuir

January 2025

Department of Polymer and Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, P.O. Box 1983969411 Tehran, Iran.

Liposomes are highly beneficial nanocarrier systems due to their biocompatibility, low toxicity, and exceptional inclusiveness, which lead to improved drug bioavailability. For biological applications, accurate control over these nanoparticles' mean size and size distribution is essential. Micromixers facilitate the continuous production of liposomes, enhancing the precision of size regulation and reproducibility.

View Article and Find Full Text PDF

Vertical flow immunoassay for multiplex mycotoxins based on photonic nitrocellulose and SERS nanotags.

Food Chem X

January 2025

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.

Here, we report a SERS based VFA using PNC as a sensing substrate for highly sensitive multiplex mycotoxins detection. The PNC was fabricated by filtration-based self-assembled monodisperse SiO NPs on a filter membrane as a template, and the obtained PNC had an ordered complementary inverse opal structure. In parallel, three kinds of Raman dyes encoding Au@Ag, Au@Ag and Au@Ag SERS nanotags were synthesized for the detection of OTA, AFB1 and ZON.

View Article and Find Full Text PDF

The use of air-jet dry powder inhalers (DPIs) offers a number of advantages for the administration of pharmaceutical aerosols, including the ability to achieve highly efficient and potentially targeted aerosol delivery to the lungs of children using the oral or trans-nasal routes of administration. To better plan targeted lung delivery of pharmaceutical aerosols with these inhalers, more information is needed on the extrathoracic (ET) depositional loss in pediatric subjects when using relatively small (e.g.

View Article and Find Full Text PDF

Emergence of Near-Infrared Photoluminescence via ZnS Shell Growth on the AgBiS Nanocrystals.

Chem Mater

January 2025

Graduate School of Biomedical Science and Engineering, Koç University, Istanbul 34450, Türkiye.

AgBiS nanocrystals (NCs), composed of nontoxic, earth-abundant materials and exhibiting an exceptionally high absorption coefficient from visible to near-infrared (>10 cm), hold promise for photovoltaics but have lack of photoluminescence (PL) due to intrinsic nonradiative recombination and challenging shell growth. In this study, we reported a facile wet-chemical approach for the epitaxial growth of ZnS shell on AgBiS NCs, which triggered the observation of PL emission in the near-infrared (764 nm). Since high quality of the core is critical for epitaxial shell growth, we first obtained rock-salt structured AgBiS NCs with high crystallinity, nearly spherical shape and monodisperse size distribution (<6%) via a dual-ligand approach reacting Ag-Bi oleate with elemental sulfur in oleylamine.

View Article and Find Full Text PDF

Facile Fabrication of Monodisperse Vinyl Hybrid Core-Shell Silica Microsphere with Short Range Radial Channel in bi-phase System.

Small

January 2025

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China.

The development of monodisperse hybrid silica microspheres with highly regular pore structure and uniform distribution of functional groups have significant value in the biomolecular separation field. In this work, the short range ordered pore channels are precisely constructed onto the non-porous silica microsphere surface by a bi-phase assembly method, and the cylindrical silica channel introduced a plethora of vinyl groups by "one-pot" co-condensation to form vinyl hybrid silica shell. As hydrophilic interaction chromatography (HILIC) stationary phase, the vinyl hybrid core-shell silica microsphere is simply modified with zwitterion glutathione (SiO@SiO-GSH), in which the HILIC enrichment process is significantly shortened due to its specific porous characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!