Photodissociation dynamics of bromofluorobenzenes using velocity imaging technique.

J Phys Chem A

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China.

Published: February 2008

AI Article Synopsis

  • The study employs velocity imaging and REMPI to analyze Br fragments from the photodissociation of various bromofluorobenzenes at 266 nm.
  • The majority (over 96%) of the detected Br fragments are in the ground state (Br(2P3/2)), and their energy distributions reveal two dissociation pathways: a fast direct route and a slower one involving excitations along specific electronic states.
  • The findings contrast with previous data from photofragment translational spectroscopy, highlighting significant discrepancies between analytical methods.

Article Abstract

Velocity imaging technique combined with (2 + 1) resonance-enhanced multiphoton ionization (REMPI) has been used to detect the Br fragment in photodissociation of o-, m-, and p-bromofluorobenzene at 266 nm. The branching ratio of ground state Br(2P3/2) is found to be larger than 96%. Its translational energy distributions suggest that the Br fragments are generated via two dissociation channels for all the molecules. The fast route, which is missing in p-bromofluorobenzene detected previously by femtosecond laser spectroscopy, giving rise to an anisotropy parameter of 0.50-0.65, is attributed to a direct dissociation from a repulsive triplet T1(A' ') or T1(B1) state. The slow one with anisotropy parameter close to zero is proposed to stem from excitation of the lowest excited singlet (pi,pi*)state followed by predissociation along a repulsive triplet (pi,sigma*) state localized on the C-Br bond. For the minor product of spin-orbit excited state Br(2P1/2), the dissociating features are similar to those found in Br(2P3/2). Our kinetic and anisotropic features of decomposition obtained in m- and p-bromofluorobenzene are opposed to those by photofragment translational spectroscopy. Discrepancy between different methods is discussed in detail.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp710212rDOI Listing

Publication Analysis

Top Keywords

velocity imaging
8
imaging technique
8
anisotropy parameter
8
repulsive triplet
8
photodissociation dynamics
4
dynamics bromofluorobenzenes
4
bromofluorobenzenes velocity
4
technique velocity
4
technique combined
4
combined resonance-enhanced
4

Similar Publications

The advancements in cardiovascular imaging over the past two decades have been significant. The miniaturization of ultrasound devices has greatly contributed to their widespread adoption in operating rooms and intensive care units. The integration of AI-enabled tools has further transformed the field by simplifying echocardiographic evaluations and enhancing the reproducibility of hemodynamic measurements, even for less experienced operators.

View Article and Find Full Text PDF

Dual-Modality Flow Phantom for Ultrasound and Optical Flow Measurements.

Phys Med Biol

January 2025

Schlegel Research Institute for Aging, University of Waterloo, 250 Laurelwood Drive, Waterloo, Ontario, N2L 3G1, CANADA.

As ultrasound-compatible flow phantoms are devised for performance testing and calibration, there is a practical need to obtain independent flow measurements for validation using a gold-standard technique such as particle image velocimetry (PIV). In this paper, we present the design of a new dual-modality flow phantom that allows ultrasound and PIV measurements to be simultaneously performed. Our phantom's tissue mimicking material is based on a novel hydrogel formula that uses propylene glycol to lower the freezing temperature of an ultrasound-compatible poly(vinyl) alcohol cryogel and, in turn, maintain the solution's optical transparency after thermocycling.

View Article and Find Full Text PDF

Current study presents an advanced method for improving the visualization of subsurface blood vessels using laser speckle contrast imaging (LSCI), enhanced through principal component analysis (PCA) filtering. By combining LSCI and laser speckle entropy imaging with PCA filtering, the method effectively separates static and dynamic components of the speckle signal, significantly improving the accuracy of blood flow assessments, even in the presence of static scattering layers located above and below the vessel. Experiments conducted on optical phantoms, with the vessel depths ranging from 0.

View Article and Find Full Text PDF

Measurement of blood flow during exercise is crucial for understanding physiological responses and performance outcomes. However, traditional methods are often invasive, costly, or require substantial training, limiting widespread research in this area. This study introduces the innovative use of limb-affixed ultrasound probe holders for vascular imaging during exercise to overcome these challenges.

View Article and Find Full Text PDF

Background: Preclinical Alzheimer's disease may be linked to impaired cerebral amyloid clearance. We aim to obtain dynamic parameters of cortical and ventricular clearance of C-PIB and compare them with CSF amyloid values in a population of healthy volunteers.

Method: We evaluated 8 healthy volunteers (4 men and mean age: 64.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!