Background: Glioblastoma is a very aggressive brain tumour with poor prognosis despite radical surgery or radiotherapy. Signal transducers and activators of transcription (STAT) proteins are important elements in intracellular signalling and part of the JAK-STAT pathway. They are activated by growth factors and cytokines and translocate into the nucleus upon activation to exert their function as transcription factors. STAT-1 can be induced by interferons and has also been found to be important in sensitizing tumours to chemotherapeutic drugs.

Materials And Methods: Forty-six glioblastoma samples have been analysed for the expression of STAT-1 by immunohistochemistry.

Results: In our study performed by immunohistochemistry, 22 out of 46 glioblastomas (48%) were strongly positive for staining with a STAT-1 antibody, 9 (20%) showed an intermediate reactivity, 8 (17%) low immunoreactivity, and 7 (15%) were completely negative. In the tumour tissue, STAT-1 expression was mostly localized in the cytoplasm. This location of STAT-1 suggests the predominant presence of an inactive form of STAT-1. Tumour giant cells were frequently strongly stained. Part of the peritumoral brain tissue showed strongly positively reactive glial cells. Interestingly, within the infiltration area strong STAT-1 expression was found in reactive astrocytes, glia, and particularly in microglial components.

Conclusion: The expression of STAT-1 in the majority of glioblastomas, together with its documented role in apoptosis and in the action of chemotherapeutic drugs on tumour cell lines point to a possible function of this protein in the response of glioblastomas to chemotherapy.

Download full-text PDF

Source

Publication Analysis

Top Keywords

stat-1 expression
12
stat-1
9
expression stat-1
8
expression human
4
human glioblastoma
4
glioblastoma peritumoral
4
peritumoral tissue
4
tissue background
4
background glioblastoma
4
glioblastoma aggressive
4

Similar Publications

DOC2b enrichment mitigates proinflammatory cytokine-induced CXCL10 expression by attenuating IKKβ and STAT-1 signaling in human islets.

Metabolism

January 2025

Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA. Electronic address:

Introduction: Type 1 diabetic human islet β-cells are deficient in double C 2 like domain beta (DOC2b) protein. Further, DOC2b protects against cytokine-induced pancreatic islet β-cell stress and apoptosis. However, the mechanisms underpinning the protective effects of DOC2b remain unknown.

View Article and Find Full Text PDF

Involvement of ATF6 in Octreotide-Induced Endothelial Barrier Enhancement.

Pharmaceuticals (Basel)

November 2024

School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.

: Endothelial hyperpermeability is the hallmark of severe disease, including sepsis and acute respiratory syndrome (ARDS). The development of medical countermeasures to treat the corresponding illness is of utmost importance. Synthetic somatostatin analogs (SSA) are FDA-approved drugs prescribed in patients with neuroendocrine tumors, and they act via growth hormone (GH) suppression.

View Article and Find Full Text PDF

Introduction: Type 1 diabetic human islet β-cells are deficient in double C 2 like domain beta (DOC2b) protein. Further, DOC2b protects against cytokine-induced pancreatic islet β-cell stress and apoptosis. However, the mechanisms underpinning the protective effects of DOC2b remain unknown.

View Article and Find Full Text PDF

Systemic administration of Janus kinase (JAK) inhibitors is effective in treating chronic graft-versus-host disease (cGVHD) but is associated with side effects. Topical drug administration effectively minimizes side effects. We aimed to investigate potential trends of the efficacy of topical delgocitinib administration in a mouse model.

View Article and Find Full Text PDF

This study aimed to investigate whether activation of PPARγ regulates M1/M2 macrophage polarization to attenuate dextran sulfate sodium salt (DSS)-induced inflammatory bowel disease (IBD) via the STAT-1/STAT-6 pathway in vivo and in vitro. We first examined the effect of PPARγ on macrophage polarization in LPS/IFN-γ-treated M1 RAW264.7 cells and IL-4/IL-13-treated M2 RAW264.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!