Due to the production and use of a multitude of chemicals in modern society, waters, sediments, soils and biota may be contaminated with numerous known and unknown chemicals that may cause adverse effects on ecosystems and human health. Effect-directed analysis (EDA), combining biotesting, fractionation and chemical analysis, helps to identify hazardous compounds in complex environmental mixtures. Confirmation of tentatively identified toxicants will help to avoid artefacts and to establish reliable cause-effect relationships. A tiered approach to confirmation is suggested in the present paper. The first tier focuses on the analytical confirmation of tentatively identified structures. If straightforward confirmation with neat standards for GC-MS or LC-MS is not available, it is suggested that a lines-of-evidence approach is used that combines spectral library information with computer-based structure generation and prediction of retention behaviour in different chromatographic systems using quantitative structure-retention relationships (QSRR). In the second tier, the identified toxicants need to be confirmed as being the cause of the measured effects. Candidate components of toxic fractions may be selected based, for example, on structural alerts. Quantitative effect confirmation is based on joint effect models. Joint effect prediction on the basis of full concentration-response plots and careful selection of the appropriate model are suggested as a means to improve confirmation quality. Confirmation according to the Toxicity Identification Evaluation (TIE) concept of the US EPA and novel tools of hazard identification help to confirm the relevance of identified compounds to populations and communities under realistic exposure conditions. Promising tools include bioavailability-directed extraction and dosing techniques, biomarker approaches and the concept of pollution-induced community tolerance (PICT). [figure: see text]
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-007-1808-8 | DOI Listing |
Heliyon
January 2025
DBT-BUILDER National Laboratory, Department of Life Sciences, Pachhunga University College, Aizawl, 796001, Mizoram, India.
Purkay. is a lesser-known species of holly (family Aquifoliaceae) that is endemic to Northeast India. Designated as critically endangered, the plant is used in the treatments of bacterial infections, cancer, intestinal helminthiasis, tuberculosis, and viral infections.
View Article and Find Full Text PDFFront Vet Sci
January 2025
Department of Zoology, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan.
, responsible for flea-borne spotted fever, is a rising zoonotic pathogen posing an increasing global threat due to its expanding geographical distribution. The rise in antibiotic-resistant strains of this pathogen underscores the urgent need for new therapeutic interventions. This study employed a comprehensive subtractive proteomics analysis of the proteome, aiming to identify essential, non-host homologous, and pathogen-specific proteins, which were subsequently evaluated as potential new drug targets.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Toxicology College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
Exposure to anthracene can cause skin and eye irritation, respiratory issues, and potential long-term health risks, including carcinogenic effects. It is also toxic to aquatic and human life and has the potential for long-term environmental contamination. This study aims to alleviate the adverse environmental effects of anthracene through fungal degradation, focusing on bioremediation approaches using bioinformatics.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
The widespread presence of antibiotics in aquatic ecosystems is a global challenge, yet the occurrence and risks associated with their transformation products (TPs) remain poorly understood. This study investigated the occurrence and potential risks of antibiotics and their TPs in water along the Chaobai River in Beijing. We used high-resolution mass spectrometry and an integrated target, suspect, and nontarget screening approach to identify 21 parent antibiotics and 78 TPs among 90 water samples, with the majority from macrolides and sulfonamides.
View Article and Find Full Text PDFDrug Metab Dispos
January 2025
Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana; The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana. Electronic address:
Environmentally persistent free radicals (EPFRs) are a recently recognized component of particulate matter that cause respiratory and cardiovascular toxicity. The mechanism of EPFR toxicity appears to be related to their ability to generate reactive oxygen species (ROS), causing oxidative damage. EPFRs were shown to affect cytochrome P450 (P450) function, inducing the expression of some forms through the Ah receptor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!