Air-broadened and N2-broadened halfwidths at room temperature for twenty-five transitions in the 4 fundamental band of '2CH4 have been determined from IR absorption spectra recorded with a tunable diode laser spectrometer. Two tunable diode lasers operating in the 1250-1380-cm(-1) region were used to obtain these data. Air-broadened halfwidths for twenty of these lines were also determined from additional spectra recorded at 0.01-cm(-1) resolution with the Fourier transform spectrometer in the McMath solar telescope complex on Kitt Peak. The air-broadened halfwidths obtained from these two techniques are very consistent with agreement better than 3% in most cases.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.24.002788DOI Listing

Publication Analysis

Top Keywords

tunable diode
12
diode laser
8
fourier transform
8
transform spectrometer
8
spectra recorded
8
air-broadened halfwidths
8
measurements 12ch4
4
12ch4 nu4
4
nu4 band
4
halfwidths
4

Similar Publications

The controlled visible spatial modes and vortex beams with tunable properties are highly sought after in cutting-edge applications, such as optical communication. In this study, by utilizing a hybrid pumping scheme, we demonstrate an ultra-compact, 607 nm orbital Poincaré laser based on a diode-pumped Pr:YLF laser. The system can generate various structured modes, including Laguerre-Gaussian (LG), Hermite-Gaussian (HG), and Hermite-Laguerre-Gaussian (HLG), all of which are mapped onto a first-order orbital Poincaré sphere.

View Article and Find Full Text PDF

Transparent organic light-emitting diode (TrOLED) displays represent cutting-edge technology posed to significantly enhance user experience. This study addresses two pivotal challenges in TrOLED development. Firstly, we focus on the innovation of transparent cathodes, a fundamental component in TrOLEDs, by introducing a ZnO/Yb:Ag cathode.

View Article and Find Full Text PDF

Tunable luminescence in Eu/Sm doped NaYMgVO for WLEDs and optical thermometry.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

College of Chemical and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 China.

In recent years, it has become a development trend to design multi-application luminescent materials with rare earth ion doping. In this work, a series of Eu/Sm doped self-activated NaYMgVO (NYMVO) phosphors were synthesized through a simple high-temperature solid-state reaction method. Interestingly, due to the energy transfer (ET) from the matrix to the activators, the luminescence color of the phosphors changed from turquoise to orange-red and yellow-green under near-ultraviolet (n-UV) 365 nm excitation.

View Article and Find Full Text PDF

Systematic Study of the Synthesis of Monodisperse CsPbI Perovskite Nanoplatelets for Efficient Color-Pure Light Emitting Diodes.

Small

January 2025

Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China.

Metal halide perovskite nanoplatelets (NPls) possess ultra-narrow photoluminescence (PL) bands tunable over the entire visible spectral range, which makes them promising for utilization in light-emitting diodes (LEDs) with spectrally pure emission colors. This calls for development of synthetic methods toward perovskite NPls with a high degree of control over both their thickness and lateral dimensions. A general strategy is developed to obtain such monodisperse CsPbI NPls through the control over the halide-to-lead ratio during heating-up reaction.

View Article and Find Full Text PDF

Tunable photoluminescence and energy transfer in Dy and Eu co-doped NaCaGd(WO) phosphors for pc-WLED applications.

Dalton Trans

January 2025

Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Metallurgical and Materials Engineering, Glass Research and Development Laboratory, Istanbul, 34220, Türkiye.

Elevated temperatures can lead to reabsorption and color drift, compromising the quality of phosphor-converted white light-emitting diode (pc-WLED) devices. To ensure the performance of WLEDs under these conditions, it is essential to develop luminescent materials that maintain stable color. Consequently, there is a pressing need for single-phase white-emitting phosphors with robust chromatic stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!