Background And Purpose: Reactive oxygen species (ROS) have been postulated to play a crucial role in the pathogenesis of ischaemia-reperfusion injury. Among these, hydrogen peroxide (H(2)O(2)) is known to be a toxic compound responsible for free-radical-dependent neuronal damage. In recent years, however, the 'bad reputation' of H(2)O(2) and other ROS molecules has changed. The aim of this study was to assess the protective role of H(2)O(2) and modification in its endogenous production on the electrophysiological and morphological changes induced by oxygen/glucose deprivation (OGD) on CA1 hippocampal neurons.

Experimental Approach: Neuroprotective effects of exogenous and endogenous H(2)O(2) were determined using extracellular electrophysiological recordings of field excitatory post synaptic potentials (fEPSPs) and morphological studies in a hippocampal slice preparation. In vitro OGD was delivered by switching to an artificial cerebrospinal fluid solution with no glucose and with oxygen replaced by nitrogen.

Key Results: Neuroprotection against in vitro OGD was observed in slices treated with H(2)O(2) (3 mM). The rescuing action of H(2)O(2) was mediated by catalase as pre-treatment with the catalase inhibitor 3-amino-1,2,4-triazole blocked this effect. More interestingly, we showed that an increase of the endogenous levels of H(2)O(2), due to a combination of an inhibitor of the glutathione peroxidase enzyme and addition of Cu,Zn-superoxide dismutase in the tissue bath, prevented the OGD-induced irreversible depression of fEPSPs.

Conclusions And Implications: Taken together, our results suggest new possible strategies to lessen the damage produced by a transient brain ischaemia by increasing the endogenous tissue level of H(2)O(2).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2267265PMC
http://dx.doi.org/10.1038/sj.bjp.0707587DOI Listing

Publication Analysis

Top Keywords

hydrogen peroxide
8
brain ischaemia
8
h2o2
8
vitro ogd
8
neuroprotective hydrogen
4
peroxide vitro
4
vitro model
4
model brain
4
ischaemia background
4
background purpose
4

Similar Publications

Automated electrochemical oxygen sensing using a 3D-printed microfluidic lab-on-a-chip system.

Lab Chip

January 2025

Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel.

Dissolved oxygen is crucial for metabolism, growth, and other complex physiological and pathological processes; however, standard physiological models (such as organ-on-chip systems) often use ambient oxygen levels, which do not reflect the lower levels that are typically found . Additionally, the local generation of reactive oxygen species (ROS; a key factor in physiological systems) is often overlooked in biology-mimicking models. Here, we present a microfluidic system that integrates electrochemical dissolved oxygen sensors with lab-on-a-chip technology to monitor the physiological oxygen concentrations and generate hydrogen peroxide (HO; a specific ROS).

View Article and Find Full Text PDF

The oxidation of Met residues in proteins is a complex process, where protein-specific structural and dynamical features play a relevant role in determining the reaction kinetics. Aiming to a full-side perspective, we report here a comprehensive characterization of Met oxidation kinetics by hydrogen peroxide in a leptin protein case study. To do that, we estimated the reaction-free energy profile of the Met oxidation via a QM/MM approach, while the kinetics of the formation of the reactive species were calculated using classical molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

We studied the effect of acteoside on a model of human corneal epithelial cells (HCEC) injury induced by HO. HCEC were divided into 4 groups and cultured for 24 h in normal medium (intact and control groups, respectively), or in a medium containing DMSO or 160 μM acteoside (DMSO and acteoside groups, respectively). Then, HO solution was added to HCEC for 4 h, except for intact cells.

View Article and Find Full Text PDF

In a quest to innovate biologically active molecules, the benzoylation of 4,6-dimethylpyrimidine-2-thiol hydrochloride (1) with benzoyl chloride derivatives was employed to produce a series of pyrimidine benzothioate derivatives (2-5). Subsequent sulfoxidation of these derivatives (2-5) using hydrogen peroxide and glacial acetic acid yielded a diverse array of pyrimidine sulfonyl methanone derivatives (6-9). In parallel, the sulfoxidation of pyrimidine sulfonothioates (10-12) yielded sulfonyl sulfonyl pyrimidines (13-15), originating from the condensation of compound 1 with sulfonyl chloride derivatives.

View Article and Find Full Text PDF

Purpose: Acanthamoeba species are eucaryotic protozoa found predominantly in soil and water. They cause ulceration and vision loss in the cornea (Acanthamoeba keratitis) and central nervous system (CNS) infection involving the lungs (granulomatous amoebic encephalitis). Antiparasitic drugs currently used in the treatment of infections caused by Acanthamoeba species are not effective at the desired level in some anatomical regions such as the eye and CNS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!