A protein-based EM label for RNA identifies the location of exons in spliceosomes.

Nat Struct Mol Biol

Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California, 1156 High Street, Santa Cruz, California 95064, USA.

Published: February 2008

To locate key RNA features in the structure of the spliceosome by EM, we fused a sequence-specific RNA binding protein to a protein with a distinct donut-shaped structure. We used this fusion to label spliceosomes assembled on a pre-mRNA that contained the target sequence in the exons. The label is clearly visible in EM images of the spliceosome, and subsequent image processing with averaging shows that the exons sit close to each other in the complex. This labeling strategy will serve as a general tool for analyzing the structures of RNA-containing macromolecular complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3004785PMC
http://dx.doi.org/10.1038/nsmb.1378DOI Listing

Publication Analysis

Top Keywords

protein-based label
4
label rna
4
rna identifies
4
identifies location
4
location exons
4
exons spliceosomes
4
spliceosomes locate
4
locate key
4
key rna
4
rna features
4

Similar Publications

Development of nucleus-targeted histone-tail-based photoaffinity probes to profile the epigenetic interactome in native cells.

Nat Commun

January 2025

School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, 230009, China.

Dissection of the physiological interactomes of histone post-translational modifications (hPTMs) is crucial for understanding epigenetic regulatory pathways. Peptide- or protein-based histone photoaffinity tools expanded the ability to probe the epigenetic interactome, but in situ profiling in native cells remains challenging. Here, we develop a nucleus-targeting histone-tail-based photoaffinity probe capable of profiling the hPTM-mediated interactomes in native cells, by integrating cell-permeable and nuclear localization peptide modules into an hPTM peptide equipped with a photoreactive moiety.

View Article and Find Full Text PDF

Protein-based stable isotope probing (protein-SIP) can link microbial taxa to substrate assimilation. Traditionally, protein-SIP requires a sample-specific metagenome-derived database for samples with unknown composition. Here, we describe GroEL-prototyping-based stable isotope probing (GroEL-SIP), that uses GroEL as a taxonomic marker protein to identify bacterial taxa (GroEL-proteotyping) coupled to SIP directly linking identified taxa to substrate consumption.

View Article and Find Full Text PDF
Article Synopsis
  • B cells can be engineered to produce therapies for genetic disorders, metabolic diseases, and cancer.
  • A method was developed to collect, expand, differentiate, and track B cells from non-human primates (NHPs) using radioactively labeled imaging techniques.
  • The study showed that infused B cells successfully targeted the bone marrow, spleen, and liver without serious side effects, indicating the potential for repeated treatments and the viability of NHPs as a model for human B cell medicine research.
View Article and Find Full Text PDF

Research note: Proteomics profiling reveal key proteins in egg white emulsification.

Poult Sci

December 2024

Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China. Electronic address:

Egg white proteins are widely recognized as excellent natural emulsifiers, yet the molecular mechanisms underlying their emulsification properties remain incompletely understood, particularly regarding the roles of individual proteins in complex natural systems. Using 4D-label-free quantitative proteomics, we systematically investigated protein dynamics during egg white emulsification by comparing egg white (EW) and the aqueous phases of egg white emulsions (EWE-W). Proteomic analysis identified 96 distinct proteins, with 64 showing significant abundance changes during emulsification.

View Article and Find Full Text PDF

Unlabelled: Diet has strong impacts on the composition and function of the gut microbiota with implications for host health. Therefore, it is critical to identify the dietary components that support growth of specific microorganisms . We used protein-based stable isotope fingerprinting (Protein-SIF) to link microbial species in gut microbiota to their carbon sources by measuring each microbe's natural C content (δC) and matching it to the C content of available substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!