Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Depletion of alveolar macrophages (AM) leads to an increase in endogenous surfactant that lasts several days beyond the repletion of AM. Furthermore, impairment to the endogenous pulmonary surfactant system contributes to ventilation-induced lung injury. The objective of the current study was to determine whether increased endogenous surfactant pools induced via AM depletion was protective against ventilation-induced lung injury. Adult rats were intratracheally instilled with either control or dichloromethylene diphosphonic acid (DMDP) containing liposomes to deplete AMs and thereby increase endogenous surfactant pools. Either 3 or 7 days following instillation, rats were exposed to 2 h of injurious ventilation using either an ex vivo or in vivo ventilation protocol and were compared with nonventilated controls. The measured outcomes were oxygenation, lung compliance, lavage protein, and inflammatory cytokine concentrations. Compared with controls, the DMDP-treated animals had significantly reduced AM numbers and increased surfactant pools 3 days after instillation. Seven days after instillation, AM numbers had returned to normal, but surfactant pools were still elevated. DMDP-treated animals at both time points exhibited protection against ventilation-induced lung injury, which included superior physiological parameters, lower protein leakage, and lower inflammatory mediator release into the air space, compared with animals not receiving DMDP. It is concluded that DMDP-liposome administration protects against ventilation-induced lung injury. This effect appears to be due to the presence of elevated endogenous surfactant pools.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajplung.00389.2007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!