Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Atactic polystyrene, one of the most widely used chemical products, was subjected to novel chemically oxidative treatments able to trigger a great variety of physical and chemical changes in the polymer's chains. The oxidized polystyrene samples, when analyzed with Fourier transform infrared spectroscopy (FTIR) clearly showed the formation of carbonyl groups and hydroxyl groups, which increased with the increase in the strength of chemically oxidative treatments. In fungal degradation tests deploying Curvularia species, the fungus colonized the oxidized samples within 9 weeks. Colonization was confirmed by microscopic examination, which showed that the hyphae had adhered to and penetrated the polymer's structure in all the treated samples. Such colonization and adhesion by microorganisms are a fundamental prerequisite for biodegradation of polymers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijheh.2007.09.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!