Transcranial sonography (TCS) of small deep brain structures, such as substantia nigra and brainstem raphe, is increasingly used for assessment of neurodegenerative disorders. Still, there are reservations against TCS because of the smallness of evaluated structures and constraints on image resolution that is discussed to be lower compared to magnetic resonance imaging (MRI). To evaluate two different-generation TCS systems in visualizing fine intracranial structures, we studied image resolution on a phantom consisting of 0.80 mm x 1.05 mm regular meshwork of nylon threads embedded in a wet, gel-filled ex vivo human skull. Imaging was performed with a former-generation and a present-day clinical ultrasound system and for comparison with MRI. In axial direction of insonation both TCS systems resolved 0.80-mm and 1.05-mm thread-to-thread distance at depths between 55 and 120 mm using transmission frequencies > or =2.5 MHz. The meshwork, however, was recognizable as such only with the contemporary TCS system at depths between 60 and 85 mm due to its higher lateral resolution. MRI resolved the meshwork if image resolution was chosen sufficiently high but not if realistic clinical conditions were applied with its trade-offs between image SNR, resolution, total scan time, and unavoidable head motion during the latter. Hence, if the requirements for optimal TCS image resolution are fulfilled, i.e. sufficient acoustic bone window, increased echogenicity of target structure and its localization in a distance of maximum +/-15 mm from midsagittal plane, findings suggest that contemporary TCS systems achieve higher image resolution of intracranial structures in comparison not only to former-generation systems, but also to MRI under clinical conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2007.12.019DOI Listing

Publication Analysis

Top Keywords

image resolution
20
intracranial structures
12
tcs systems
12
contemporary tcs
8
clinical conditions
8
tcs
7
resolution
7
image
6
systems
5
structures
5

Similar Publications

Background: Fibrotic types of interstitial lung abnormalities seen on high-resolution computed tomography scans, characterised by traction bronchiolectasis/bronchiectasis with or without honeycombing, are predictors of progression and poor prognostic factors of interstitial lung abnormalities. There are no reports on the clinical characteristics of fibrotic interstitial lung abnormalities on high-resolution computed tomography scans. Therefore, we aimed to examine these clinical characteristics and clarify the predictive factors of fibrotic interstitial lung abnormalities on high-resolution computed tomography scans.

View Article and Find Full Text PDF

Ectopic thyroid tissue in the airway: a case report.

BMC Pulm Med

January 2025

Department of Respiratory Medicine, The Second Hospital of Jilin University, No. 4026 Yatai street, Changchun, 130041, Jilin, China.

Background: Ectopic thyroid tissue (ETT) is a rare congenital anomaly caused by the abnormal embryonic migration of thyroid tissue, leading to its presence outside its usual pretracheal location. This condition can lead to diagnostic challenges, especially when located within the airway, as it mimics other respiratory disorders such as asthma.

Case Presentation: We report the case of a 69-year-old man with endotracheal ETT presenting with severe dyspnea, and the lesion was initially suspected to be malignant.

View Article and Find Full Text PDF

Background: Hyaluronidase remains the mainstay treatment for impending filler-induced facial skin necrosis. Complete resolution of impending skin necrosis following hyaluronidase injection is estimated to be around 77.8%.

View Article and Find Full Text PDF

Background: To define optimal parameters for the evaluation of vessel visibility in intracranial stents (ICS) and flow diverters (FD) using photon-counting detector computed tomography angiography (PCD-CTA) with spectral reconstructions.

Methods: We retrospectively analyzed consecutive patients with implanted ICS or FD, who received a PCD-CTA between April 2023 and March 2024. Polyenergetic, virtual monoenergetic, pure lumen, and iodine reconstructions with different keV levels (40, 60, and 80) and reconstruction kernels (body vascular [Bv]48, Bv56, Bv64, Bv72, and Bv76) were evaluated by two radiologists with regions of interests and Likert scales.

View Article and Find Full Text PDF

Three-dimensional diffractive acoustic tomography.

Nat Commun

January 2025

Department of Biomedical Engineering, Duke University, Durham, NC, USA.

Acoustically probing biological tissues with light or sound, photoacoustic and ultrasound imaging can provide anatomical, functional, and/or molecular information at depths far beyond the optical diffusion limit. However, most photoacoustic and ultrasound imaging systems rely on linear-array transducers with elevational focusing and are limited to two-dimensional imaging with anisotropic resolutions. Here, we present three-dimensional diffractive acoustic tomography (3D-DAT), which uses an off-the-shelf linear-array transducer with single-slit acoustic diffraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!