To examine the clinical applicability of Pc 4, a promising second-generation photosensitizer, for the photodynamic treatment of lymphocyte-mediated skin diseases, we studied the A431 and Jurkat cell lines, commonly used as surrogates for human keratinocyte-derived carcinomas and lymphocytes, respectively. As revealed by ethyl acetate extraction and absorption spectrophotometry, uptake of Pc 4 into the two cell lines was linear with Pc 4 concentration and similar on a per cell basis but greater in Jurkat cells on a per mass basis. Flow cytometry showed that uptake was linear at low doses; variations in the dose-response for uptake measured by fluorescence supported differential aggregation of Pc 4 in the two cell types. As detected by confocal microscopy, Pc 4 localized to mitochondria and endoplasmic reticulum in both cell lines. Jurkat cells were much more sensitive to the lethal effects of phthalocyanine photodynamic therapy (Pc 4-PDT) than were A431 cells, as measured by a tetrazolium dye reduction assay, and more readily underwent morphological apoptosis. In a search for molecular factors to explain the greater photosensitivity of Jurkat cells, the fate of important Bcl-2 family members was monitored. Jurkat cells were more sensitive to the induction of immediate photodamage to Bcl-2, but the difference was insufficient to account fully for their greater sensitivity. The antiapoptotic protein Mcl-1 was extensively cleaved in a dose- and caspase-dependent manner in Jurkat, but not in A431, cells exposed to Pc 4-PDT. Thus, the greater killing by Pc 4-PDT in Jurkat compared with A431 cells correlated with greater Bcl-2 photodamage and more strongly to the more extensive Mcl-1 degradation. Pc 4-PDT may offer therapeutic advantages in targeting inflammatory cells over normal keratinocytes in the treatment of T-cell-mediated skin diseases, such as cutaneous lymphomas, dermatitis, lichenoid tissue reactions and psoriasis, and it will be instructive to evaluate the role of Bcl-2 family proteins, especially Mcl-1, in the therapeutic response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1751-1097.2007.00278.x | DOI Listing |
Pharmaceuticals (Basel)
November 2024
Laboratory of Nanobiotechnologies, Saint-Petersburg National Research Academic University of the Russian Academy of Sciences, Saint Petersburg 194021, Russia.
: A series of spiro-fused heterocyclic compounds containing cyclopropa[a]pyrrolizidine-2,3'-oxindole and 3-spiro[3-azabicyclo[3.1.0]-hexane]oxindole frameworks were synthesized and studied for their in vitro antiproliferative activity against human erythroleukemia (K562), cervical carcinoma (HeLa), acute T cell leukemia (Jurkat), melanoma (Sk-mel-2) and breast cancer (MCF-7) as well as mouse colon carcinoma (CT26) cell lines.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Organic Chemistry and Macromolecular Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
(3-(pyrimidin-4-yl)-7-azaindoles) are synthetic hybrids of the naturally occurring alkaloids and and display a strong cytotoxic potential. We have recently shown that the novel derivative is highly cytotoxic in several lymphoma and leukemia cell lines as well as in primary patient-derived lymphoma and leukemia cells and predominantly targets cyclin-dependent kinases (CDKs). Here, we efficiently synthesized nine novel 2-aminopyridyl congeners (-), i.
View Article and Find Full Text PDFInflamm Res
January 2025
Queen's Belfast University, Belfast, Northern Ireland, UK.
Background: Giant cell arteritis (GCA) is a prevalent artery and is strongly correlated with age. The role of CD4+ Memory T cells in giant cell arteritis has not been elucidated.
Method: Through single-cell analysis, we focused on the CD4+ Memory T cells in giant cell arteritis.
Mol Biol Rep
January 2025
Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Fundam Clin Pharmacol
February 2025
Experimental Oncology and Hemopathies Laboratory, Clinical Analysis Department, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil.
Background: Chalcones have been described in the literature as promising antineoplastic compounds.
Objectives: Therefore, the objective of this study was to analyze the cytotoxic effect of 23 synthetic chalcones on human acute leukemia (AL) cell lines (Jurkat and K562).
Methods: Cytotoxicity assessment was performed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!