A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Controlled-release particulate cytokine adjuvants for cancer therapy. | LitMetric

Controlled-release particulate cytokine adjuvants for cancer therapy.

Endocr Metab Immune Disord Drug Targets

Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA.

Published: December 2007

AI Article Synopsis

  • Cytokine therapy can help shrink tumors in cancer patients, but using it throughout the body often leads to serious side effects; loco-regional delivery is a less toxic option.
  • Controlled-release cytokine depot formulations allow for sustained, localized delivery of cytokines directly to tumors, improving their effectiveness with fewer side effects than traditional methods.
  • Studies show that specific combinations of cytokines like IL-12, GM-CSF, and TNFalpha can induce tumor regression and stimulate immune responses, but the effectiveness decreases with repeated treatments due to the re-emergence of immune suppressor cells.

Article Abstract

Cytokine therapy can induce tumor regression in cancer patients but systemic administration of cytokines is accompanied with severe toxicity. Loco-regional delivery represents an effective and less toxic alternative to systemic injection. However; the requirement for frequent repeated injections of recombinant cytokine or the logistical difficulties associated with gene-modification have limited wide-spread use of loco-regional therapy. A simpler alternative local delivery strategy involves the use of controlled-release cytokine depot formulations. These formulations provide the advantage that physiological doses of cytokines are directly released to the tumor microenvironment in a sustained manner. Anti-tumor efficacy of IL-2; IL-12; GM-CSF or TNFalpha-encapsulated polymer microspheres has been evaluated in syngeneic murine and human tumor /SCID mouse xenograft models. A single intra-tumoral injection of these formulations; particularly that of IL-12 in combination with GM-CSF or TNFalpha; promoted the regression of established primary tumors; induced systemic anti-tumor T- and NK-cell responses and achieved complete eradication of disseminated disease. Cellular and molecular analysis of post-therapy tumor microenvironment demonstrated that treatment promoted the activation of tumor-associated T-effector/memory cells; the elimination of CD4+ CD25+ Foxp3+ T-suppressors and the de novo priming of tumor-specific CD8+ T-effector cells. Long-term monitoring of post-therapy tumors revealed that reversal of intra-tumoral immune suppression was transient and that T-suppressor cells rapidly re-infiltrated tumors. Repeated treatment resurrected anti-tumor activity; however, therapeutic efficacy declined with each treatment cycle. The observed loss of therapeutic efficacy was associated with a progressive intensification of the post-treatment T-suppressor cell rebound. In contrast; depletion of T-suppressor cells with low dose chemotherapy prior to each cycle of treatment resulted in a dramatic enhancement of long-term therapeutic efficacy leading to complete remissions. Clinical implications of these findings are discussed herein.

Download full-text PDF

Source
http://dx.doi.org/10.2174/187153007782794335DOI Listing

Publication Analysis

Top Keywords

therapeutic efficacy
12
tumor microenvironment
8
t-suppressor cells
8
controlled-release particulate
4
cytokine
4
particulate cytokine
4
cytokine adjuvants
4
adjuvants cancer
4
cancer therapy
4
therapy cytokine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!