Transplantation of insulin-producing cells offers a promising therapy to treat diabetes. However, due to the limited number of donor islet cells available, researchers are looking for different sources of pancreatic islet progenitor or stem cells. A stem cell with extensive proliferative ability may provide a valuable source of islet progenitor cells. Several studies have demonstrated that a progenitor/stem-cell population can be expanded in vitro to generate large numbers of islet progenitor cells. However, efficient and directed differentiation of these cells to an endocrine pancreatic lineage has been difficult to achieve. We discuss here various pancreatic islet stem cells that we and others have obtained from embryonic, fetal or adult human tissues. We review the progress that has been achieved with pancreatic islet progenitor cell differentiation in the last 2 decades and discuss how close we are to translate this research to the clinics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/157488806778226830 | DOI Listing |
Genes (Basel)
January 2025
Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
Abnormal development of the second heart field significantly contributes to congenital heart defects, often caused by disruptions in tightly regulated molecular pathways. , a gene encoding a protein with SET and MYND domains, is essential for heart and skeletal muscle development. Mutations in SMYD1 result in severe cardiac malformations and misregulation of expression in mammals.
View Article and Find Full Text PDFNature
January 2025
Institute of Computational Biology, Helmholtz Center, Munich, Germany.
Single-cell genomic technologies enable the multimodal profiling of millions of cells across temporal and spatial dimensions. However, experimental limitations hinder the comprehensive measurement of cells under native temporal dynamics and in their native spatial tissue niche. Optimal transport has emerged as a powerful tool to address these constraints and has facilitated the recovery of the original cellular context.
View Article and Find Full Text PDFGenes Dev
December 2024
Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
Transcription factors (TFs) are indispensable for maintaining cell identity through regulating cell-specific gene expression. Distinct cell identities derived from a common progenitor are frequently perpetuated by shared TFs, yet the mechanisms that enable these TFs to regulate cell-specific targets are poorly characterized. We report that the TF NKX2.
View Article and Find Full Text PDFStem Cell Res Ther
December 2024
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
Background: Pluripotent cell-derived islet replacement therapy offers promise for treating Type 1 diabetes (T1D), but concerns about uncontrolled cell proliferation and tumorigenicity present significant safety challenges. To address the safety concern, this study aims to establish a proof-of-concept for a glucose-responsive, insulin-secreting cell line integrated with a built-in FailSafe kill-switch.
Method: We generated β cell-induced progenitor-like cells (βiPLCs) from primary mouse pancreatic β cells through interrupted reprogramming.
J Mol Histol
December 2024
National Clinical Research Center for Ocular Disease, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, 325027, Zhejiang, China.
Pancreatic development is a complex process vital for maintaining metabolic balance, requiring intricate interactions among different cell types and signaling pathways. Fibroblast growth factor receptors 2b (FGFR2b)-ligands signaling from adjacent mesenchymal cells is crucial in initiating pancreatic development and differentiating exocrine and endocrine cells through a paracrine mechanism. However, the precise critical time window that affects pancreatic development remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!