Aldose reductase (AR) enzymatically transforms cytosolic glucose into sorbitol, a molecule that poorly penetrates cell membranes and is sometimes slowly metabolized. Hyperglycemia can cause intracellular accumulation of sorbitol and its metabolite, fructose, which can create osmotic swelling and cell dysfunction. Driven by this simple paradigm, the "Osmotic Hypothesis," and armed with positive pre-clinical results on prototype AR inhibitors (ARIs), researchers worldwide have targeted diabetic neuropathy with ARIs for four decades. However, most double-blind placebo-controlled ARI diabetic neuropathy trial outcomes have been disappointing. Ironically, scientific evidence that AR plays a key pathogenic role in diabetic neuropathy has continued to mount. Diabetic mice lacking AR exhibit strong protection of nerve function. Diabetic mice overexpressing AR have accelerated nerve dysfunction and damage. Human diabetics with "high AR expression" alleles shows faster loss of maximum pupillary constriction velocity, an indicator of autonomic neuropathy, while those with "low AR expression" alleles have slower loss of foot hot thermal threshold, an indicator of sensory neuropathy. Evidence is now strong that the Osmotic Hypothesis and the nerve sorbitol endpoint were misleading. Reliance on nerve sorbitol to assess AR inhibition likely caused underestimation of doses needed for clinical efficacy and overestimation of drug safety margins. Current recognition of the pathogenic importance of oxidative stress and its strong link to metabolic flux through AR have led to a revitalized "Metabolic Flux Hypothesis" emphasizing cofactor turnover rather than polyol accumulation. Hopefully, these new insights will lead to novel ARIs that will effectively and safely slow the progression of diabetic neuropathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/138945008783431781 | DOI Listing |
J Diabetes Res
January 2025
First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece.
To describe the demographic and clinical characteristics of patients with Charcot neuro-osteoarthropathy (CNO) and to examine for differences between participants with Type 1 diabetes mellitus (DM) (T1DM) and Type 2 diabetes mellitus (T2DM). Multicenter observational study in eight diabetic foot clinics in six countries between January 1, 1996, and December 31, 2022. Demographic, clinical, and laboratory parameters were obtained from the medical records.
View Article and Find Full Text PDFJ Pain Res
January 2025
Programa de Pós-Graduação em Medicina (Cirurgia Geral), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
Introduction: Diabetes mellitus (DM) has become a public health problem, which is associated with high morbidity and mortality, due to the chronic complications, such as diabetic neuropathy. Current recommendations for the treatment of neuropathic pain achieve a reduction of 30% in only 30% of cases. Therefore, it is necessary to identify new therapeutic approaches to improve the quality of life of diabetic patients.
View Article and Find Full Text PDFDiabetes Metab Syndr Obes
January 2025
Department of Nursing, Indonesian Christian University of Maluku, Ambon, Maluku, Indonesia.
Neurobiol Pain
December 2024
Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
Painful diabetic neuropathy (PDN) is a challenging complication of diabetes with patients experiencing a painful and burning sensation in their extremities. Existing treatments provide limited relief without addressing the underlying mechanisms of the disease. PDN involves the gradual degeneration of nerve fibers in the skin.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Institute of Translational Genomics, Helmholtz Zentrum München- German Research Center for Environmental Health, Ingolstädter Landstraße 1, Neuherberg 85764, Germany.
Type 2 diabetes (T2D) complications pose a significant global health challenge. Omics technologies have been employed to investigate these complications and identify the biological pathways involved. In this review, we focus on four major T2D complications: diabetic kidney disease, diabetic retinopathy, diabetic neuropathy, and cardiovascular complications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!