Budding of retroviruses requires the structural precursor polyprotein, Gag, to target the plasma membrane through its N-terminal matrix (MA) domain. For HIV-1, the interaction between membrane signaling molecule phosphatidylinositol 4,5-diphosphate (PIP2) and MA induces the exposure of myristate and promotes membrane binding. Here we studied oligomerization of the naturally unmyristylated equine infectious anemia virus (EIAV) MA and its interaction with PIP2-C4 primarily using solution NMR spectroscopy. The measured 1H-15N residual dipolar coupling agrees with the atomic coordinates from the EIAV MA crystal structure. The analytical ultracentrifugation results show a dominant population of monomeric EIAV MA at a concentration of 63 microM and 20 degrees C, along with a small trimer and a broad distribution of other oligomers. The monomer-trimer equilibrium model and the quaternary packing of the trimer were further established by the concentration-dependent 15N spin relaxation rates and chemical shifts. Binding of MA to PIP2-C4 was detected by chemical shift mapping (CSM) with an apparent Kd of 182 +/- 56 microM, a value similar to that reported for HIV-1 MA. The PIP2 binding site includes the Loop region between Helix2 and Helix3 in the EIAV MA. CSM and spin relaxation dispersion reveal a coupling of conformational change and submillisecond dynamics, respectively, between the Loop and trimeric Interface Residues due to PIP2 binding. We infer that PIP2 participates in the initial trimer formation of EIAV MA, but more importantly, the concentration effect is dominant in shifting the equilibrium toward trimer, in line with the entropic switch mechanism proposed for myristylated HIV-1 MA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3120113PMC
http://dx.doi.org/10.1021/bi701984hDOI Listing

Publication Analysis

Top Keywords

solution nmr
8
equine infectious
8
infectious anemia
8
anemia virus
8
spin relaxation
8
pip2 binding
8
pip2
5
eiav
5
nmr characterizations
4
characterizations oligomerization
4

Similar Publications

Observation of H-H J-couplings in fast magic-angle-spinning solid-state NMR spectroscopy.

Nat Commun

December 2024

Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.

While H-H J-couplings are the cornerstone of all spectral assignment methods in solution-state NMR, they are yet to be observed in solids. Here we observe H-H J-couplings in plastic crystals of (1S)-(-)-camphor in solid-state NMR at magic angle spinning (MAS) rates of 100 kHz and above. This is enabled in this special case because the intrinsic coherence lifetimes at fast MAS rates become longer than the inverse of the H-H J couplings.

View Article and Find Full Text PDF

Hydronium Ions Are Less Excluded from Hydrophobic Polymer-Water Interfaces than Hydroxide Ions.

J Phys Chem B

December 2024

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

The cloud point temperatures of aqueous poly(-isopropylacrylamide) (PNIPAM) and poly(ethylene) oxide (PEO) solutions were measured from pH 1.0 to pH 13.0 at a constant ionic strength of 100 mM.

View Article and Find Full Text PDF

Real-Time Tractography-Assisted Neuronavigation for Transcranial Magnetic Stimulation.

Hum Brain Mapp

January 2025

Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland.

State-of-the-art navigated transcranial magnetic stimulation (nTMS) systems can display the TMS coil position relative to the structural magnetic resonance image (MRI) of the subject's brain and calculate the induced electric field. However, the local effect of TMS propagates via the white-matter network to different areas of the brain, and currently there is no commercial or research neuronavigation system that can highlight in real time the brain's structural connections during TMS. This lack of real-time visualization may overlook critical inter-individual differences in brain connectivity and does not provide the opportunity to target brain networks.

View Article and Find Full Text PDF

Background: Intravenous lipid emulsions are an essential component of nutritional support for very preterm infants. Many neonatal intensive care units have transitioned from traditional soybean oil-only to fish oil-containing multicomponent lipid emulsions, but the neurodevelopmental implications have not been well-explored. The primary aim of this study was to assess extrauterine third trimester brain growth in very preterm infants supported with soybean oil-only compared to fish-oil containing multicomponent lipid emulsions; white matter development and neurobehavioral regulation at term were also investigated.

View Article and Find Full Text PDF

A comprehensive investigation of the impact of cross-linker backbone structure on protein dynamics analysis: A case study with Pin1.

Talanta

December 2024

State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China. Electronic address:

Understanding protein structure is essential for elucidating its function. Cross-linking mass spectrometry (XL-MS) has been widely recognized as a powerful tool for analyzing protein complex structures. However, the effect of cross-linker backbone structure on protein dynamic conformation analysis remains less understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!