A chemical study on the anti-inflammatory components of the red alga Gracilaria verrucosa led to the isolation of new 11-deoxyprostaglandins ( 1- 4), a ceramide ( 5), and a C 16 keto fatty acid ( 6), along with known oxygenated fatty acids ( 7- 14). Their structures were elucidated on the basis of NMR and MS data. The absolute configurations of compounds 1- 5 were determined by Mosher's method. The anti-inflammatory activity of the isolated compounds ( 1- 14) was evaluated by determining their inhibitory effects on the production of pro-inflammatory mediators (NO, IL-6, and TNF-alpha) in lipopolysaccharide (LPS)-activated RAW 264.7 murine macrophage cells. Compounds 9 and 10 exhibited the most potent activity. In the evaluation of these two compounds and derivatized analogues ( 15- 40), the anti-inflammatory activity was enhanced in some synthetic analogues. These enone fatty acids were investigated as potential anti-inflammatory leads for the first time.

Download full-text PDF

Source
http://dx.doi.org/10.1021/np070452qDOI Listing

Publication Analysis

Top Keywords

red alga
8
alga gracilaria
8
gracilaria verrucosa
8
synthetic analogues
8
fatty acids
8
anti-inflammatory activity
8
anti-inflammatory
5
anti-inflammatory constituents
4
constituents red
4
verrucosa synthetic
4

Similar Publications

One of the most important steps in preclinical drug discovery is to demonstrate the in vivo efficacy of potential leishmanicidal compounds and good characteristics at the level of parasite killing prior to initiating human clinical trials. This paper describes the use of dehydrothyrsiferol (DT), isolated from the red alga , in a pharmaceutical form supported on Sepigel, and the in vivo efficacy against a mouse model of cutaneous leishmaniasis. Studying the ultrastructural effect of DT was also carried out to verify the suspected damage at the cellular level and determine the severity of damages produced in the homeostasis of promastigotes.

View Article and Find Full Text PDF

Chemical Compositions of the Marine Red Alga Laurencia composita Collected in Japan.

Chem Biodivers

January 2025

Fukuyama University: Fukuyama Daigaku, Faculty of Life Science and Biotechnology, 1 Gakuen-cho, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292, Fukuyama, JAPAN.

Marine red alga Laurencia composita was collected from seven sampling locations in Japan, and all samples were identified based on morphological studies as well as rbcL sequencing analysis. This is the first report of the isolation of (-)-8-bromo-9-hydroxy-(E)-γ-bisabolene (1) as a natural product, and bisabolene-type and β-chamigrene-type sesquiterpenes found in L. composita collected in Japan.

View Article and Find Full Text PDF

Construction of the Gene Tagging and Knock Out (GTKO) System for Reliable Genetic Analysis of Nuclear Genes in Cyanidioschyzon merolae.

Plant Cell Physiol

January 2025

Laboratory for Chemistry and Life Science, Institute of Innovative Research, Institute of Science Tokyo, Yokohama, Japan.

The unicellular red alga Cyanidioschyzon merolae is a eukaryotic photosynthetic model organism used for basic and applied cell biology studies. Its nuclear genome can be modified by homologous recombination with exogenously introduced DNA. The comparison of mutants with isogenic strains is critical for reliable genetic analyses; however, this has been impossible thus far.

View Article and Find Full Text PDF

Pure phycocyanin (PC) hexamers from red algae were first prepared in this research. PC hexamers are helpful for studying the role and mechanism of PCs in energy transfer within phycobilisomes from red algae. The PC hexamers from Polysiphonia urceolata are stable at lower pH (pH 5.

View Article and Find Full Text PDF

On the effectiveness of the red alga Laurencia microcladia as a PAH biomonitor in coastal marine ecosystems.

Environ Sci Pollut Res Int

January 2025

Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.

Anthropogenic pressures affect large stretches of Mediterranean coastal environments, determining alterations, including chemical pollution, able to impair ecosystem functioning and services. Among the pollutants of major concern for their toxicity and persistence, there are polycyclic aromatic hydrocarbons (PAHs), which can be effectively monitored through bioaccumulation approaches. However, the main biomonitor of PAHs in the Mediterranean Sea, Posidonia oceanica, is currently undergoing extensive regressions due to anthropogenic pressures, forcing the search for alternative biomonitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!