Small-animal magnetic resonance imaging is becoming an increasingly utilized noninvasive tool in the study of animal models of MS including the most commonly used autoimmune, viral, and toxic models. Because most MS models are induced in rodents with brains and spinal cords of a smaller magnitude than humans, small-animal MRI must accomplish much higher resolution acquisition in order to generate useful data. In this review, we discuss key aspects and important differences between high field strength experimental and human MRI. We describe the role of conventional imaging sequences including T1, T2, and proton density-weighted imaging, and we discuss the studies aimed at analyzing blood-brain barrier (BBB) permeability and acute inflammation utilizing gadolinium-enhanced MRI. Advanced MRI methods, including diffusion-weighted and magnetization transfer imaging in monitoring demyelination, axonal damage, and remyelination, and studies utilizing in vivo T1 and T2 relaxometry, provide insight into the pathology of demyelinating diseases at previously unprecedented details. The technical challenges of small voxel in vivo MR spectroscopy and the biologically relevant information obtained by analysis of MR spectra in demyelinating models is also discussed. Novel cell-specific and molecular imaging techniques are becoming more readily available in the study of experimental MS models. As a growing number of tissue restorative and remyelinating strategies emerge in the coming years, noninvasive monitoring of remyelination will be an important challenge in small-animal imaging. High field strength small-animal experimental MRI will continue to evolve and interact with the development of new human MR imaging and experimental NMR techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-540-73677-6_10 | DOI Listing |
Chemphyschem
January 2025
South China University of Technology School of Materials Science and Engineering, State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, 381 Wushan Road, 510640, Guangzhou, CHINA.
Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials possess unique advantages of high-efficiency and narrowband emission, which have rapidly occupied an important position in the field of organic light-emitting diodes (OLEDs). In recent years, significant advancements have been made in the development of MR-TADF materials, particularly in achieving spectral narrowing for high-color-purity OLED applications. Based on diverse MR-TADF molecular skeletons, this review summarizes the primary molecular strategies to narrow spectrum by suppressing structural relaxation and intermolecular interactions.
View Article and Find Full Text PDFOtolaryngol Head Neck Surg
January 2025
Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA.
Objective: Cystic fibrosis (CF) is a clinical entity defined by aberrant chloride (Cl) ion transport causing downstream effects on mucociliary clearance (MCC) in sinonasal epithelia. Inducible deficiencies in transepithelial Cl transport via CF transmembrane conductance regulator (CFTR) has been theorized to be a driving process in recalcitrant chronic rhinosinusitis (CRS) in patients without CF. We have previously identified that brief exposures to bacterial lipopolysaccharide (LPS) in mammalian cells induces an acquired dysfunction of CFTR in vitro and in vivo.
View Article and Find Full Text PDFChemSusChem
January 2025
CSIR Central Glass & Ceramic Research Institute, EMDD, 196 Raja S C Mullick Road, 700032, Kolkata, INDIA.
The advancement of photocatalytic technology for solar-driven hydrogen (H2) production remains hindered by several challenges in developing efficient photocatalysts. A key issue is the rapid recombination of charge carriers, which significantly limits the light-harvesting ability of materials like BiOCl and Cu2SnS3 quantum dots (CTS QDs), despite the faster charge mobility and quantum confinement effect, respectively. Herein, a BiOCl/CTS (BCTS) heterostructure was synthesized by loading CTS QDs onto BiOCl 2D nanosheets (NSs), that demonstrated excellent photocatalytic activity under visible light irradiation.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Organoid Innovation Center, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Rd, Suzhou, Jiangsu, 215123, China.
The lack of in vivo accurate human liver models hinders the investigation of liver-related diseases, injuries, and drug-related toxicity, posing challenges for both basic research and clinical applications. Traditional cellular and animal models, while widely used, have significant limitations in replicating the liver's complex responses to various stressors. Liver organoids derived from human pluripotent stem cells, adult stem cells primary cells, or tissues can mimic diverse liver cell types, major physiological functions, and architectural features.
View Article and Find Full Text PDFBMC Public Health
January 2025
Department of Population and Health, College of Humanities and Legal Studies, University of Cape Coast, Cape Coast, Ghana.
Background: Teenage childbirth is an issue of social and public health concern in Ghana, with high prevalence in some regions, including the Central Region. There is a dire need to understand the experiences of teenagers beyond pregnancies to facilitate comprehensive sexual and reproductive health information and service provision. We explored the postnatal experiences of teenage mothers in five communities in the Central Region of Ghana.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!