AI Article Synopsis

Article Abstract

Purpose: To depict the normal anatomy of cranial nerves in detail and define the exact relationships between cranial nerves and adjacent structures with three-dimensional reversed fast imaging with steady-state precession (FISP) (3D-PSIF) with diffusion-weighted MR sequence.

Materials And Methods: 3D-PSIF with diffusion-weighted MR sequence was performed and axial images were obtained in 22 healthy volunteers. Postprocessing techniques were used to generate images of cranial nerves, and the images acquired were compared with anatomical sections and textbook diagrams.

Results: In all subjects, 3D-PISF sequence could produce homogeneous images and high contrast between the cranial nerves and other solid structures. The intracranial portions of all cranial nerves except the olfactory nerve were identified; the extracranial portions of nerves II-XII, except the nerves within the cavernous sinuses, were identified in all subjects bilaterally.

Conclusion: The 3D-PSIF with diffusion-weighted sequence can characterize the normal MR appearance of cranial nerves and its branches. The ability to define the nerves may provide greater sensitivity and specificity in detecting abnormalities of craniofacial structure.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.21009DOI Listing

Publication Analysis

Top Keywords

cranial nerves
28
diffusion-weighted sequence
12
3d-psif diffusion-weighted
12
nerves
10
three-dimensional reversed
8
cranial
7
3-t imaging
4
imaging cranial
4
nerves three-dimensional
4
reversed fisp
4

Similar Publications

: Resection of tumors invading the cavernous sinus (CS) carries a risk of injury to the cranial nerves and internal carotid artery. Therefore, radical surgery involving lesions around the CS remains challenging, especially for lesions invading the CS, optic sheath, and oculomotor cave. Here, we describe a surgical strategy for meningiomas invading these structures and report on the clinical outcomes.

View Article and Find Full Text PDF

The visceral organ-brain axis, mediated by vagal sensory neurons, is essential for maintaining various physiological functions. Here, we investigate the impact of liver-projecting vagal sensory neurons on energy balance, hepatic steatosis, and anxiety-like behavior in mice under obesogenic conditions. A small subset of vagal sensory neurons innervate the liver and project centrally to the nucleus of the tractus solitarius, area postrema, and dorsal motor nucleus of the vagus, and peripherally to the periportal areas in the liver.

View Article and Find Full Text PDF

The sense of hearing originates in the cochlea, which detects sounds across dynamic sensory environments. Like other peripheral organs, the cochlea is subjected to environmental insults, including loud, damage-inducing sounds. In response to internal and external stimuli, the central nervous system directly modulates cochlear function through olivocochlear neurons (OCNs), which are located in the brainstem and innervate the cochlear sensory epithelium.

View Article and Find Full Text PDF

Intracranial pressure (ICP) monitoring is a cornerstone of neurocritical care in managing severe brain injury. However, current invasive ICP monitoring methods carry significant risks, including infection and intracranial hemorrhage, and are contraindicated in certain clinical situations. Additionally, these methods are not universally available.

View Article and Find Full Text PDF

Postoperative facial nerve (FN) dysfunction is associated with a significant impact on the quality of life of patients and can result in psychological stress and disorders such as depression and social isolation. Preoperative prediction of FN outcomes can play a critical role in vestibular schwannomas (VSs) patient care. Several studies have developed machine learning (ML)-based models in predicting FN outcomes following resection of VS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!