Parkinson disease (PD) is a progressive neurodegenerative disorder that is considered to affect the brainstem at its early stages and other brain regions, including the limbic system and isocortex, in advanced stages. It has been suggested that PD progression is characterized pathologically by the spreading of Lewy body deposition. To identify novel proteins involved in PD progression, we prepared subcellular fractions from the frontal cortex of pathologically verified PD patients at different stages of disease and Lewy body deposition and from age-matched controls. Protein expression profiles were compared using a robust quantitative proteomic technique called isobaric tagging for relative and absolute quantification in conjunction with mass spectrometry. Approximately 200 proteins were found to display significant differences in their relative abundance between PD patients at various stages and controls. Gene ontology analysis indicated that these altered proteins belonged to many categories (e.g. mitochondrial function and neurotransmission) that were likely critically involved in the pathogenesis of PD. Of those, mortalin, a mitochondrial protein, was decreased in the advanced PD cases and was further validated to be decreased using independent techniques. These results suggest a role for mortalin in PD progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/nen.0b013e318163354a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!