The splotch (Sp) mouse is a model for both neurulation defects and defects in neural crest cell (NCC) derivatives. Since neurulation and NCC emigration from the neural tube occur at similar times in development, we suggest that these two events share a mechanism that, if disrupted, leads to malformations in both developmental pathways. Previous studies have shown that the underlying defect in these mutants may involve a mechanism that alters cellular organization and communication. Cell adhesion molecules (CAMs) have been linked with such interactions and because some, including N-CAM, are involved in neural development, we were interested in their pattern of expression in the splotch mutant. Immunolocalization studies showed similar temporospatial distributions of N-CAM antibody in embryonic day 9 mutants and controls. However, mutant embryos had a much higher intensity of anti-N-CAM fluorescence compared to controls. Further characterization using immunoblot analysis revealed that Sp mutants have an altered N-CAM polypeptide profile. Two N-CAM isoforms (Mr 140K and 180K, K = 10(3] are normally present at this time of development. However, extracts from Sp embryos display a heavier N-CAM species (Mr 200K), as well as an altered 140K isoform. Heterozygotes also exhibit a different N-CAM profile, displaying a band between 180K and 200K in addition to the normal 180K and 140K species. Microheterogeneity was also observed in mutant and heterozygous embryos carrying Spd, an allele of Sp. However, these differences were less dramatic than that of Sp. The Sp locus may be involved in post-translational modification of N-CAM. An aberration in N-CAM processing could be the primary target of the mutation that leads to the development abnormalities observed in this mouse mutant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.113.3.1049 | DOI Listing |
Clinical trials have shown favorable effects of exercise on frailty, supporting physical activity (PA) as a treatment and prevention strategy. Proteomics studies suggest that PA alters levels of many proteins, some of which may function as molecules in the biological processes underlying frailty. However, these studies have focused on structured exercise programs or cross-sectional PA-protein associations.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada. Electronic address:
Bank voles are susceptible to prion strains from many different species, yet the molecular mechanisms underlying the ability of bank vole prion protein (BVPrP) to function as a universal prion acceptor remain unclear. Potential differences in molecular environments and protein interaction networks on the cell surface of brain cells may contribute to BVPrP's unusual behavior. To test this hypothesis, we generated knock-in mice that express physiological levels of BVPrP (M109 isoform) and employed mass spectrometry to compare the interactomes of mouse (Mo) PrP and BVPrP following mild in vivo crosslinking of brain tissue.
View Article and Find Full Text PDFCell Regen
January 2025
Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA.
Astroglia are integral to brain development and the emergence of neurodevelopmental disorders. However, studying the pathophysiology of human astroglia using brain organoid models has been hindered by inefficient astrogliogenesis. In this study, we introduce a robust method for generating astroglia-enriched organoids through BMP4 treatment during the neural differentiation phase of organoid development.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
Neuroligins (NLGNs) are postsynaptic adhesion molecules critical for neuronal development that are highly associated with autism spectrum disorder (ASD). Here, we provide an overview of the literature on rare variants. In addition, we introduce a new approach to analyze human variation within genes to identify sensitive regions that have an increased frequency of ASD-associated variants to better understand NLGN function.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA.
Neurons use cell-adhesion molecules (CAMs) to interact with other neurons and the extracellular environment: the combination of CAMs specifies migration patterns, neuronal morphologies, and synaptic connections across diverse neuron types. Yet little is known regarding the intracellular signaling cascade mediating the CAM recognitions at the cell surface across different neuron types. In this study, we investigated the neural developmental role of Afadin, a cytosolic adapter protein that connects multiple CAM families to intracellular F-actin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!