Polyglutamine diseases are inherited neurodegenerative disorders caused by expansion of CAG repeats encoding a glutamine tract in the disease-causing proteins. There are nine disorders, each having distinct features but also clinical and pathological similarities. In particular, spinocerebellar ataxia type 1 and 7 (SCA1 and SCA7) patients manifest cerebellar ataxia with degeneration of Purkinje cells. To determine whether the disorders share molecular pathogenic events, we studied two mouse models of SCA1 and SCA7 that express the glutamine-expanded protein from the respective endogenous loci. We found common transcriptional changes, with down-regulation of insulin-like growth factor binding protein 5 (Igfbp5) representing one of the most robust changes. Igfbp5 down-regulation occurred in granule neurons through a non-cell-autonomous mechanism and was concomitant with activation of the insulin-like growth factor (IGF) pathway and the type I IGF receptor on Purkinje cells. These data define one common pathogenic response in SCA1 and SCA7 and reveal the importance of intercellular mechanisms in their pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2234131PMC
http://dx.doi.org/10.1073/pnas.0711257105DOI Listing

Publication Analysis

Top Keywords

insulin-like growth
12
growth factor
12
sca1 sca7
12
spinocerebellar ataxia
8
ataxia type
8
purkinje cells
8
factor pathway
4
pathway altered
4
altered spinocerebellar
4
type
4

Similar Publications

This study is designed to assess the effect of root extract of P. ginseng on kidney tissue injury attributed to cisplatin and its molecular mechanism involved in this process in the AKI rat model. Twenty-four male Wistar rats were randomly allocated into 4 experimental groups including: the control group, the cisplatin group, the extract 100 mg/kg group, and the extract 200 mg/kg group.

View Article and Find Full Text PDF

Fetal bovine serum (FBS) has long been the standard supplement in cell culture media, providing essential growth factors and proteins that support cell growth and differentiation. However, ethical concerns and rising costs associated with FBS have driven researchers to explore alternatives, particularly human platelet lysate (HPL). Among these alternatives, fibrinogen-depleted HPL (FD-HPL) has gained attention due to its reduced thrombogenicity, which minimizes the risk of clot formation in cell cultures and enhances the safety of therapeutic applications.

View Article and Find Full Text PDF

Insulin Receptor Substrate-2 Regulates the Secretion of Growth Factors in Response to Amino Acid Deprivation.

Int J Mol Sci

January 2025

Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.

Insulin receptor substrates (IRSs) are well-known mediators of the insulin and insulin-like growth factor (IGF)-I signaling pathways. We previously reported that the protein levels of IRS-2, a molecular species of IRS, were upregulated in the livers of rats fed a protein-restricted diet. This study aimed to elucidate the physiological role of IRS-2, whose level increases in response to protein restriction in cultured hepatocyte models.

View Article and Find Full Text PDF

Platelet-Rich Plasma (PRP) is a biological treatment widely used in regenerative medicine for its restorative capacity. Although PRP is typically applied at the time of obtention, long-term storage and preservation could enhance its versatility and clinical applications. The objective of this study was to evaluate the effect of long-term freezing on PRP.

View Article and Find Full Text PDF

In recent decades, the scientific community has faced a major challenge in the search for new therapies that can slow down or alleviate the process of neuronal death that accompanies neurodegenerative diseases. This study aimed to identify an effective therapy using neurotrophic factors to delay the rapid and aggressive cerebellar degeneration experienced by the Purkinje Cell Degeneration (PCD) mouse, a model of childhood-onset neurodegeneration with cerebellar atrophy (CONDCA). Initially, we analyzed the changes in the expression of several neurotrophic factors related to the degenerative process itself, identifying changes in insulin-like growth factor 1 (IGF-1) and Vascular Endothelial Growth Factor B (VEGF-B) in the affected animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!