Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hippocampal early long-term potentiation (LTP) elicited by a weak (one or two) tetanic stimulus normally fades away within 90 min. Late LTP elicited by strong (four) stimuli lasts >180 min and requires new protein synthesis to persist. If a strong tetanus is injected once into a synapse, even a weak tetanus injected into another synapse can evoke persistent LTP. It was hypothesized that a synaptic tag enables capture of newly synthesized synaptic molecules. Here, we found two synaptic capture mechanisms for a weakly stimulated synapse to acquire persistency (i.e., neuropsin dependent and independent). The single tetanus evokes a neuropsin-dependent form that follows downstream signaling into integrin/actin signal and L-type voltage-dependent Ca2+ channel (LVDCC) pathway. Additionally, a neuropsin-independent form of synaptic capture is evoked by a stronger (two) tetanus than the former. Both forms converging on LVDCC might serve different associative memories depending on their input strength. Our study strongly supports the hypothesis of synaptic tagging and demonstrates that neuropsin-dependent late associativity is particularly important in nonstressful associative memory.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6671011 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.4397-07.2008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!