Parallel data resampling and Fourier inversion by the scan-line method.

IEEE Trans Med Imaging

Sch. of Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA.

Published: October 2012

Fourier inversion is an efficient method for image reconstruction in a variety of applications, for example, in computed tomography and magnetic resonance imaging. Fourier inversion normally consists of two steps, interpolation of data onto a rectilinear grid, if necessary, and inverse Fourier transformation. Here, the authors present interpolation by the scan-line method, in which the interpolation algorithm is implemented in a form consisting only of row operations and data transposes. The two-dimensional inverse Fourier transformation can also be implemented with only row operations and data transposes. Accordingly, Fourier inversion can easily be implemented on a parallel computer that supports row operations and data transposes on row distributed data. The conditions under which the scan-line implementations are algorithmically equivalent to the original serial computer implementation are described and methods for improving accuracy outside of those conditions are presented. The scan-line algorithm is implemented on the iWarp parallel computer using the Adapt language for parallel image processing. This implementation is applied to magnetic resonance data acquired along radial-lines and spiral trajectories through Fourier transform space.

Download full-text PDF

Source
http://dx.doi.org/10.1109/42.414610DOI Listing

Publication Analysis

Top Keywords

fourier inversion
16
row operations
12
operations data
12
data transposes
12
scan-line method
8
magnetic resonance
8
inverse fourier
8
fourier transformation
8
algorithm implemented
8
parallel computer
8

Similar Publications

An ML-Enhanced Laser-Based Methane Slip Sensor Using Wavelength Modulation Spectroscopy.

ACS Sens

January 2025

Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, British Columbia V6T 1Z4, Canada.

Natural gas (NG) is a promising alternative to diesel for sustainable transport, potentially reducing GHG and air quality emissions significantly. However, the GHG benefits hinge on managing methane slip, the unburned methane in the exhaust of NG engines, which carries a significant global warming potential. The CH slip from NG engines is highly dependent on engine type and operation, and effective greenhouse gas emission mitigation requires that the actual operation of real-world engines is monitored.

View Article and Find Full Text PDF

Ibuprofen sodium (IBP) is a commonly used NSAID for multiple pain conditions. However, despite its extensive use, it is associated with multiple GIT adverse effects after oral administration. In the present study, we have fabricated thermoresponsive gel depot using Poly (N-vinylcaprolactam) and sodium alginate as polymers.

View Article and Find Full Text PDF

Fourier analysis of signal dependent noise images.

Sci Rep

December 2024

Cancer Epidemiology Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Bruce B. Downs Blvd, Tampa, FL, 33612, USA.

An archetype signal dependent noise (SDN) model is a component used in analyzing images or signals acquired from different technologies. This model-component may share properties with stationary normal white noise (WN). Measurements from WN images were used as standards for making comparisons with SDN in both the image domain (ID) and Fourier domain (FD).

View Article and Find Full Text PDF

This study aims to evaluate cerebrospinal fluid (CSF) flow dynamics within ventricles, and the subarachnoid space (SAS) using the velocity selective spin labeling (VSSL) MRI method with Fourier-transform-based velocity selective inversion preparation. The study included healthy volunteers who underwent MRI scanning with specific VSSL parameters optimized for CSF flow quantification. The VSSL sequence was calibrated against phase-contrast MRI (PC-MRI) to ensure accurate flow velocity measurements.

View Article and Find Full Text PDF

Laser heterodyne detection boasts exceptional advantages such as high spectral resolution and high signal-to-noise ratio (SNR). It excels at capturing spectral line broadening information of upper atmospheric molecules, which presents substantial research value in the realms of greenhouse gas profile measurement and the assessment of laser propagation effects in the atmosphere. This paper delves into the investigation of the processing method for heterodyne signals, adopting a non-modulated signal processing method to construct a near-infrared non-modulated laser heterodyne radiometer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!