A theoretical model was previously developed to evaluate the relationship between the dynamics of ultrasonic speckle and its underlying tissue. The model is divided into an instrumental part represented by the point spread function (in the far field) of the ultrasonic apparatus and a moving tissue component described by a collection of scatterers. By computing the convolution of these terms and then the envelope, one obtains a simulated ultrasonic speckle pattern sequence which shows speckle motions closely linked to the tissue dynamics when small motion amplitudes are involved. Here, a theoretical study of the correlation between various linear transformations of the tissue and the corresponding ultrasonic speckle motions is performed, based on a 2D extension of the envelope cross-correlation analysis of a narrow-band Gaussian noise. In the linear scan case, obviously, tissue translation generates an identical speckle translation. However, tissue/speckle motion correlation decreases with increasing rotation and/or biaxial deformation, lateral deformation (perpendicular to the beam propagation axis) being much less sensitive. With respect to the transducer frequency, the rotation and the axial deformation of the tissue show a better relationship with their respective speckle motion at lower frequencies while lateral deformation correlation is independent of the pulse frequency. With respect to beam (pulse) size parameters, tissue/speckle correlation decreases with rotation when a wide ultrasonic beam is used while the axial deformation correlation decreases with the axial duration of the pulse. This study sets the ground for the development of an ultrasonic strain gauge particularly useful for the assessment of biomechanical soft tissue and fluid flow properties based on speckle tracking.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/42.387711 | DOI Listing |
Front Cardiovasc Med
January 2025
Department of Cardiology, The First People's Hospital of Neijiang, Neijiang, China.
More than 1 million permanent pacemakers are implanted worldwide each year, half of which are in patients with high-grade atrioventricular block. Pacemakers provide adequate frequency support in the initial stage, but traditional right ventricular (RV) pacing may lead to or aggravate left ventricular dysfunction and arrhythmia. Several potential risk factors for heart failure and arrhythmias after pacemaker surgery have been identified, but their occurrence remains difficult to predict clinically.
View Article and Find Full Text PDFComput Med Imaging Graph
January 2025
The SMART (Smart Medicine and AI-based Radiology Technology) Lab, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China; Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, China. Electronic address:
Parkinson disease (PD) is a prevalent neurodegenerative disorder, and its accurate diagnosis is crucial for timely intervention. We propose the PArkinson disease Denoising and Segmentation Network (PADS-Net), to simultaneously denoise and segment transcranial ultrasound images of midbrain for accurate PD diagnosis. The PADS-Net is built upon generative adversarial networks and incorporates a multi-task deep learning framework aimed at optimizing the tasks of denoising and segmentation for ultrasound images.
View Article and Find Full Text PDFFront Cardiovasc Med
December 2024
School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
Objective: The left atrial stiffness index (LASI) holds significance in the atrioventricular coupling function and heart failure progression. To assess left atrial function and evaluate the relationship between LASI and exercise capacity in hypertension-related heart failure with preserved ejection fraction (HT-HFpEF).
Methods: The study involved 62 healthy subjects and 163 patients with HT (112 patients in simple HT group and 51 patients in HT-HFpEF group).
Quant Imaging Med Surg
December 2024
Department of Ultrasonic Medicine, West China Second Hospital of Sichuan University, Chengdu, China.
Background: Small fetuses include constitutional small for gestational age (SGA) and fetal growth-restricted (FGR) fetuses. Various adverse intrauterine environments can lead to FGR which has higher risk of abnormal perinatal outcome. The fetal heart is very sensitive to the effects of a negative intrauterine environment.
View Article and Find Full Text PDFEchocardiography
October 2024
Department of Medical Ultrasonics, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!