Pathogenic Vibrio, Aeromonas and Arcobacter spp. associated with copepods in the Straits of Messina (Italy).

Mar Pollut Bull

Dipartimento di Biologia Animale ed Ecologia Marina, Università di Messina, Salita Sperone 31, 98166 Messina, Italy.

Published: March 2008

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2007.12.001DOI Listing

Publication Analysis

Top Keywords

pathogenic vibrio
4
vibrio aeromonas
4
aeromonas arcobacter
4
arcobacter spp
4
spp associated
4
associated copepods
4
copepods straits
4
straits messina
4
messina italy
4
pathogenic
1

Similar Publications

Gonadal miRNomes and transcriptomes in infected fish reveal sexually dimorphic patterns of the immune response.

Funct Integr Genomics

January 2025

Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, 08003, Spain.

Fish disease outbreaks caused by bacterial burdens are responsible for decreasing productivity in aquaculture. Unraveling the molecular mechanisms activated in the gonads after infections is pivotal for enhancing husbandry techniques in fish farms, ensuring disease management, and selecting the most resilience phenotype. The present study, with an important commercial species the European sea bass (Dicentrarchus labrax), an important commercial species in Europe, examined changes in the miRNome and transcriptome 48 h after an intraperitoneal infection with Vibrio anguillarum.

View Article and Find Full Text PDF

Antibiofilm mechanism of mouse gastrointestinal stimulation against Vibrio parahaemolyticus under bile salt culture.

Microb Pathog

January 2025

College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China; Engineering Research Center of Food Thermal-processing Technology, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

Bile salts are crucial microbe-selective inhibitors present in the intestinal tracts of humans and other animals. Environmental and clinical strains of Vibrio parahaemolyticus (V. parahaemolyticus) exhibited different biofilm-forming abilities under bile salt incubation.

View Article and Find Full Text PDF

Unlabelled: Pathogenic strains cause cholera using different mechanisms. O1 and O139 serogroup strains use the toxin-co-regulated pilus (TCP) and cholera toxin (CT) for intestinal colonization and to promote secretory diarrhea, while non-O1/non-O139 serogroup strains are typically non-toxigenic and use alternate virulence factors to cause a clinically similar disease. An O39 serogroup, TCP/CT-negative strain, named AM-19226, uses a type III secretion system (T3SS) to translocate more than 10 effector proteins into the host cell cytosol.

View Article and Find Full Text PDF

Quorum sensing controls numerous processes ranging from the production of virulence factors to biofilm formation. Biofilms, communities of bacteria that are attached to one another and/or a surface, are common in nature, and when they form, they can produce a quorum of bacteria. One model system to study biofilms is the bacterium , which forms a biofilm that promotes the colonization of its symbiotic host.

View Article and Find Full Text PDF

Cholera, a disease caused by , remains a pervasive public health threat, particularly in regions with inadequate water sanitation and hygiene infrastructure, such as Bangladesh. This review explores the complex interplay between water pollution and cholera transmission in Bangladesh, highlighting how contaminated water bodies serve as reservoirs for . A key focus is the potential role of probiotics as a novel intervention approach for cholera prevention and management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!