A facile, efficient way to fabricate macroscopic soft colloidal crystals with fiber symmetry by drying a latex dispersion in a tube is presented. A transparent, stable colloidal crystal was obtained from a 25 wt % latex dispersion by complete water evaporation for 4 days. The centimeter-long sample was investigated by means of synchrotron small-angle X-ray diffraction (SAXD). Analysis of a large number of distinct Bragg peaks reveals that uniaxially oriented colloidal crystals with face-centered cubic lattice structure were formed. The measurement of evaporation rates under different conditions indicates that the water evaporates primarily through the optically clear regions (i.e., via the solid material) even when the region is more than 2 mm thick.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la703332vDOI Listing

Publication Analysis

Top Keywords

colloidal crystals
12
macroscopic soft
8
soft colloidal
8
crystals fiber
8
fiber symmetry
8
latex dispersion
8
facile preparation
4
preparation macroscopic
4
colloidal
4
symmetry facile
4

Similar Publications

Purpose: Biofilms are one of the main threats related to bacteria. Owing to their complex structure, in which bacteria are embedded in the extracellular matrix, they are extremely challenging to eradicate, especially since they can inhabit both biotic and abiotic surfaces. This study aimed to create an effective antibiofilm nanofilm based on graphene oxide-metal nanoparticles (GOM-NPs).

View Article and Find Full Text PDF

Different kinds of proteins interact with the digestible lipids in various ways, affecting the adsorption behavior of proteins and digestion. The ordered porous layer interferometry (OPLI) system was constructed by the silica colloidal crystal (SCC) films used to monitor the real-time binding assessment between bovine serum albumin (BSA), casein, fibrinogen, and triolein. The OPLI system reflected the changes in protein mass on the SCC films in real time through the migration of the interference spectrum of the SCC films, which was converted into the changes in optical thickness (ΔOT) that can be monitored.

View Article and Find Full Text PDF

Regulating the production distribution in Ni-Cu nanoparticle mediated nitrile hydrogenation.

J Colloid Interface Sci

December 2024

College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, PR China; Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Institute of Zhejiang University - Quzhou, 324000, Quzhou, PR China. Electronic address:

The selective hydrogenation of nitrile compounds represents a pivotal area of research within both industrial and academic catalysis. In this study, we prepared Ni-Cu bimetallic catalysts through a co-deposition-crystallization sequence, aimed at the efficient production of primary and secondary amines. The enhanced selectivity for primary amines is attributed to the downshift of the d-band center of NiCu, which weakens the adsorption of key imine intermediates.

View Article and Find Full Text PDF

Detecting ion-specific forces between fatty acid colloids and salt crystals in brines using colloidal probe AFM.

J Colloid Interface Sci

December 2024

School of Chemical Engineering and ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals (UQ Node), The University of Queensland, Brisbane, Queensland 4072, Australia. Electronic address:

Hypothesis: Ion-specific forces in concentrated salt solutions play critical roles in many applications, ranging from biology to engineering, e.g., separating water-soluble minerals in brines by flotation using air bubbles.

View Article and Find Full Text PDF

Maintaining hexagonal structures through interfacial positioning of crosslinkers for nanofiltration.

J Colloid Interface Sci

December 2024

Institute for Frontier Materials, Deakin University, Geelong VIC 3216, Australia. Electronic address:

Hypothesis: Optimizing interfacial positioning of crosslinkers within a reactive self-assembled hexagonal lyotropic liquid crystals (HLLC) system could assist in retaining the hexagonal structure during polymerization and thereby improving water filtration performances of the as-synthesized nanofiltration membranes.

Experiments: The positioning of the hydrophilic crosslinker, poly (ethylene glycol) diacrylate (PEGDA), within the reactive HLLC system was systematically investigated using H and C solid nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. The structural variation and water filtration performances of these HLLC systems with/without crosslinkers after polymerization were further studied using grazing incidence SAXS (GISAXS) and crossflow filtration tests, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!