This study describes a method to computationally assess the function of homologous enzymes through small molecule binding interaction energy. Three experimentally determined X-ray structures and four enzyme models from ornithine cyclo-deaminase, alanine dehydrogenase, and mu-crystallin were used in combination with nine small molecules to derive a function score (FS) for each enzyme-model combination. While energy values varied for a single molecule-enzyme combination due to differences in the active sites, we observe that the binding energies for the entire pathway were proportional for each set of small molecules investigated. This proportionality of energies for a reaction pathway appears to be dependent on the amino acids in the active site and their direct interactions with the small molecules, which allows a function score (FS) to be calculated to assess the specificity of each enzyme. Potential of mean force (PMF) calculations were used to obtain the energies, and the resulting FS values demonstrate that a measurement of function may be obtained using differences between these PMF values. Additionally, limitations of this method are discussed based on: (a) larger substrates with significant conformational flexibility; (b) low homology enzymes; and (c) open active sites. This method should be useful in accurately predicting specificity for single enzymes that have multiple steps in their reactions and in high throughput computational methods to accurately annotate uncharacterized proteins based on active site interaction analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.21907 | DOI Listing |
Protein Sci
January 2025
Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.
View Article and Find Full Text PDFBiochemistry
December 2024
Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, Hannover 30167, Germany.
Farnesyl pyrophosphate derivatives bearing an additional oxygen atom at position 5 proved to be very suitable for expanding the substrate promiscuity of sesquiterpene synthases (STSs) and the formation of new oxygenated terpenoids. Insertion of an oxygen atom in position 9, however, caused larger restraints that led to restricted acceptance by STSs. In order to reduce some of the proposed restrictions, two FPP-ether derivatives with altered substitution pattern around the terminal olefinic double bond were designed.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul, Türkiye.
The increasing global prevalence of Alzheimer's disease necessitates the development of novel therapeutic approaches. Neurodegenerative diseases are associated with increased oxidative stress and levels of cholinesterase enzymes. Hence, the development of cholinesterase inhibitors and antioxidants may provide neuroprotective effects.
View Article and Find Full Text PDFBackground: Understanding site-related factors that influence enrolment within multicenter randomized controlled trials (RCT) may help reduce trial delays and cost over-runs and prevent early trial discontinuation. In this analysis of PROSPECT (Probiotics: Prevention of Severe Pneumonia and Endotracheal Colonization Trial), we describe patient enrolment patterns and examine factors influencing site-based monthly enrolment.
Design: Retrospective analysis of a multicenter RCT.
Int J Biol Macromol
December 2024
School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
In this study, we developed a novel composite catalytic hydrogel, which integrates excellent mechanical properties, catalytic activity, and sensing performance. Discarded hydrogel sensors are reused as templates for in-situ generation of metal nanoparticles, and multifunctional hydrogels combining sensing and catalysis are realized. Polyacrylamide (PAM) provides a three-dimensional network structure, while octadecyl methacrylate (SMA) acts as a hydrophobic association center, enhancing the structural stability of the hydrogel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!