Detoxification and antioxidant responses in diverse organs of Jenynsia multidentata experimentally exposed to 1,2- and 1,4-dichlorobenzene.

Environ Toxicol

Universidad Nacional de Córdoba - CONICET, Facultad de Ciencias Químicas, Dto. Bioquímica Clínica - CIBICI. Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina.

Published: April 2008

We report changes in activities of detoxification and antioxidant enzymes as well as lipid peroxidation levels in liver, gills, and brain of Jenynsia multidentata exposed to 1,2- and 1,4-dichlorobenzene (DCB). Fish were captured at an unpolluted area, transported to the laboratory, and acclimated previous to experiments. Exposures were carried out using 1,2-DCB at 0.5, 1, 5, and 10 mg L(-1) and 1,4-DCB at 0.05, 0.1, 1, and 5 mg L(-1). After 24-h exposure, fish were sacrificed and dissected separating liver, gills, and brain of each fish. Organs were used for enzyme extractions, evaluating antioxidant system through the assay of glutathione reductase, guaiacol peroxidase, glutathione peroxidase, catalase as well as detoxification system by measuring glutathione-S-transferase (GST) activity. Additionally, thiobarbituric acid reactive substances (TBARS) method was used to evaluate the peroxidation of lipids. No changes in GST activity were found in liver of fish exposed to DCBs but in gills and brain of exposed fish. The detoxification system was activated at lower concentrations of 1,2-DCB than 1,4-DCB. Antioxidant response is activated in liver at low DCB concentrations, followed by a drop at highest levels. We also found activation of the antioxidant system in gills and brain of exposed fish. On the other hand, we did not observe changes in TBARS concentrations in liver or gills of exposed fish with respect to controls, but in brain of fish exposed to 1,2-DCB (> or =0.5 mg L(-1)) and 1,4-DCB (5 mg L(-1)). Responses of both detoxification and antioxidant systems of J. multidentata suggest that 1,2-DCB is more toxic than 1,4-DCB to this specie. To the extent of our knowledge, this is the first report of oxidative stress induced by DCBs in fish. Our results evidence that the brain is the organ most severely affected by the oxidative stress caused by DCBs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.20326DOI Listing

Publication Analysis

Top Keywords

gills brain
16
detoxification antioxidant
12
liver gills
12
exposed fish
12
fish
9
jenynsia multidentata
8
exposed 12-
8
12- 14-dichlorobenzene
8
l-1 14-dcb
8
brain fish
8

Similar Publications

Advancing in vitro systems to address the effects of chemical pollution requires a thorough characterization of their functionalities, such as their repertoire of biotransformation enzymes. Currently, knowledge regarding the presence, activity magnitudes, and inducibility of different biotransformation pathways in vitro is scarce, particularly across organs. We report organ-specific kinetics for phase I and II biotransformation enzymes, under basal and induced conditions, in two in vitro systems using salmonid fish: S9 sub-cellular fractions from brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) were compared with rainbow trout cell lines.

View Article and Find Full Text PDF

The fishmeal is boon for aquaculture production in this recent pollution and climate change era. However, the demand of fishmeal is enhancing in many folds which needs to find alternative to fishmeal in cheap price. The present investigation addresses these issues with quinoa husk (QH).

View Article and Find Full Text PDF

Pymetrozine (a pyridine azomethine pesticide) is one of the most commonly and frequently used insecticides. Scanty information is available about the deleterious effects of Pymetrozine on fish especially bighead carp. Hence, the current study investigated chronic toxicological effects of pymetrozine in bighead carp.

View Article and Find Full Text PDF

Toxicity assessment of effluent from a potato-processing industry in Cyprinus carpio.

Environ Toxicol Pharmacol

January 2025

Environmental Engineering Laboratory, Department of Sanitary and Environmental Engineering, Federal University of Santa Maria (UFSM), Avenida Roraima, 1000, Santa Maria, RS 97015-900, Brazil.

Potato (Solanum tuberosum) cultivation faces the challenge of excessive pesticide use. During processing, the disposal of large volumes of contaminated water into water bodies can result in severe environmental damage, such as fish deaths. This study aimed to evaluate the toxicological effects of chemical compounds present in the effluent from a potato-processing industry using the test organism Cyprinus carpio.

View Article and Find Full Text PDF

Background: Fishes are susceptible to hypoxia stress, while the common carp is known for its high tolerance to hypoxia. The hypoxia-inducible factor (HIF) pathway directly regulates the cell's response to hypoxia. Still, it is currently unknown which members of the hif-α genes are present in common carp and their specific functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!